
The Avg-Act Swap and Plaintext Overflow Detection in Fully
Homomorphic Operations Over Deep Circuits

Ihyun Nam
Honors Thesis in Computer Science

Stanford University
May 2024

ABSTRACT
Fully homomorphic encryption is a cryptographic scheme that en-
ables any function to be computed on encrypted data. Although
homomorphic evaluation on deep circuits has many real-life appli-
cations, fully homomorphic encryption is not commercialized due
to its low speed and huge computational overhead.

In the aim to make fully homomorphic operations faster and
bridge the gap between security and practicality, we introduce the
Avg-Act Swap. The Avg-Act Swap is a deployable tool in privacy-
preserving machine learning; it places the average pool layer before
the activation layer as opposed to the conventional practice of
ordering them the other way around in neural networks over unen-
crypted data. We introduce two FHE-friendly convolutional neural
networks and a modified version of Lenet-5 [26] that utilize the
Avg-Act Swap to demonstrate improvements in encrypted inference
speed. Most notably, we improve the encrypted inference speed of
Lenet-5 by 28.58% after modifying it with the Avg-Act Swap, with
a 90% accuracy.

Plaintext overflow is a plausible problem in deep circuit homo-
morphic evaluations. We introduce (to our knowledge) the first
formalized protocol to detect plaintext overflows in fixed-point
arithmetic fully homomorphic encryption schemes that maintains
indistinguishability over chosen plaintext attacks. We show that
a remote server can homomorphically compute the maximum rel-
ative error bound of the client’s plaintext only using encrypted
inputs from the client. After all operations are done, the client can
compare the received relative error bound to the actual error bound
in the decrypted plaintext to detect an overflow. Further research
to make this work in progress more efficient is encouraged.

KEYWORDS
Fully Homomorphic Encryption; Privacy Preserving Techniques;
Machine Learning; Cheon-Kim-Kim-Song
ACM Reference Format:
Ihyun Nam and Honors Thesis in Computer Science, Stanford University,
May 2024. 2024. The Avg-Act Swap and Plaintext Overflow Detection in
Fully Homomorphic Operations Over Deep Circuits. In Proceedings of .ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
, ,
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Fully homomorphic encryption (FHE) offers many privacy advan-
tages as it allows an untrusted third party to compute any arithmetic
circuit on encrypted data without seeing the raw data. This is es-
pecially valuable in fields like health care, defense, or finance that
need to ensure the secrecy of the processed data that may contain
sensitive information. In many real-life applications of FHE, it is
required or advantageous to compute FHE on deep circuits. For ex-
ample, in privacy-preserving machine learning algorithms, training
the algorithm over deeper circuits often increases the accuracy of
the resulting model. Moreover, linear approximations of non-linear
functions used in machine learning models become more accurate
as they are approximated as higher degree polynomials. All these,
however, come at the cost of a higher computational overhead.

There exists a trade-off between accuracy and computational
efficiency of machine learning models with FHE because homo-
morphic operations are extremely expensive and slow. It has long
been known that it is impractical to compute any reasonably large
circuits using FHE for commercial applications. Against this back-
drop, we propose the Avg-Act Swap to significantly speed up the
encrypted inference speed over deep neural networks and test its
performance in classifying encrypted images. Image classification is
an adequate task with which to test the Avg-Act Swap as (1) it often
involves deep circuit computations and (2) it is often outsourced to
a (possibly untrusted) remote server due to the high computational
overhead, and therefore images need to be encrypted for privacy.
We train our models with plain images and employ FHE only during
the classification of encrypted images, so computational overhead
in this paper always refers to the overhead during inference, as
opposed to during training. The Avg-Act Swap may be deployed
in any neural network operating homomorphically on encrypted
data, not just those specializing in image classifications.

Besides the speed of operation, another problem unique to per-
forming FHE over deep circuits is plaintext overflow. Many FHE
schemes define their plaintext and ciphertext spaces on a ring of
some integer modulus. If the plaintext or the ciphertext grows
larger than the chosen modulus, it "wraps around" and loses the
encoded information. Some schemes have measures to prevent ci-
phertext overflows from happening; namely, ‘ModChange’ of the
Brakerski/Fan-Vercauteren scheme (BFV) [15] and ‘Rescaling’ of
Cheon-Kim-Kim-Song (CKKS) [10]. However, to our knowledge,
there is no known method to detect plaintext overflows in any
fixed-point arithmetic FHE scheme.

In some cases after a plaintext overflow, it is easy for the client
to judge whether the decrypted result is meaningful or not, without
relying on a special overflow detection mechanism. However, in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
Ihyun Nam

, , Ihyun Nam

many real-life applications, overflown plaintexts may still appear
valid, albeit incorrect. For example, in homomorphically classifying
an encrypted image as one of 10 categories, an overflown result
may indicate that an image is ‘category 2’ instead of ‘category 5’. A
client with no ground truth on the classification results has no way
to tell that ‘category 2’ is incorrect. Furthermore, in deep circuits,
it is difficult for a client to estimate the exact depth of the circuit
and decide on the appropriate plaintext modulus beforehand. This
is especially true in cases where the server’s operations are not
known to the client. Therefore, the state-of-the-art method to pre-
vent plaintext overflows suggested in many papers [9, 11, 35] is to
make sure that the plaintext modulus is sufficiently large. Since
using larger encryption parameters in FHE schemes increases the
computational overhead, such practices are inefficient. More impor-
tantly, in case that a plaintext overflow does happen, the client has
no way of knowing that. Undetected plaintext overflows are a prob-
lem because the client will then take incorrect computation results
as answers, which may have serious consequences in applications
like in health care or national defense. In this paper, we focus on
plaintexts in CKKS and build a plaintext overflow detection mech-
anism defined through a series of client-server interactions that
respects FHE’s indistinguishability over chosen plaintext attacks
(IND-CPA security).

2 RELATEDWORK
Since FHE was first formalized by Gentry [17] in 2009, there have
been numerous attempts to apply the principles of FHE to real-
world tasks. Some well-studied applications include using FHE in
biometric authentication and DNA matching [3, 20, 43], secure
banking [32], or contact tracing [39, 40], all without revealing sensi-
tive information about the engaged parties. In particular, encrypting
images with homomorphic encryption before processing them has
been recognized as a powerful privacy-preserving mechanism in
applications like face recognition [28, 33] or medical diagnoses
based on patients’ images [8, 12, 44].

Image classification tasks often involve developing and training a
novel neural network based on the requirements and specifications
of the particular image classification task. For example, Cryptonets
[18] is a classical feed-forward neural network made of 9 layers
including the convolutional layer, fully connected layer, average
pooling, and two activation functions: Square and Sigmoid. Cryp-
tonets implements the encryption scheme introduced by Bos et al.
in [6], which maps plaintexts in the ring 𝑅𝑛𝑡 := Z𝑡 [𝑥]/(𝑥𝑛 + 1) to
ciphertexts in the ring 𝑅𝑛𝑞 := Z𝑞 [𝑥]/(𝑥𝑛 +1). Our work differs from
Cryptonets in that we use the CKKS scheme for the encryption
and decryption of images. Our plaintexts are therefore complex
numbers, and a possibly indefinite number of homomorphic op-
erations can be supported through the bootstrapping procedure
of CKKS. AlexNet [2] is another powerful convolutional neural
network with FHE that achieves at least an 80-bit security level and
a 99% classification accuracy for encrypted MNIST [13] images.

These deep learning applications of FHE seek a temporary so-
lution to plaintext overflow by making their plaintext modulus
sufficiently large or by normalizing their plain data before encrypt-
ing them. In 2022, Lee and Shin [27] proposed Overflow-detectable
Floating-point Fully Homomorphic Encryption that has an inherent

plaintext overflow detection scheme using a separate ciphertext
acting as a flag. However, this method is limited to FHE schemes
using floating-point arithmetic and therefore is not applicable to
fixed-point arithmetic schemes like CKKS, BFV, or the Brakerski-
Gentry-Vaikuntanathan scheme [7]. To the best of our knowledge,
this paper introduces the first plaintext overflow detection scheme
demonstrated on CKKS.

3 BACKGROUND AND DEFINITIONS
In this preliminary section, we formally define FHE and the relevant
algorithms of CKKS, mostly following the conventions of [10] and
[17]. We also introduce relevant background knowledge in machine
learning, especially on the pooling and activation layers that are
involved in the Avg-Act Swap.

3.1 Fully Homomorphic Encryption
An FHE scheme has an efficient algorithm Evaluate such that for
some valid public key and private key pair (pk, sk), ciphertexts
𝑐𝑖 ← Encrypt(𝑝𝑘, 𝜋𝑖), and any efficient circuit 𝐶 , it outputs

𝜋 ← Evaluate(𝑝𝑘,𝐶, 𝑓 (𝜋1, 𝜋2, · · · , 𝜋𝑛)).
The result of evaluation 𝜋 is such that

Decrypt(𝑠𝑘, 𝜋) = 𝐶 (𝜋1, 𝜋2, · · · , 𝜋𝑛).
In the context of privacy-preserving machine learning image classi-
fication, the circuit 𝐶 is the trained neural network and the cipher-
texts are the encrypted pixel values of client’s images to classify.

3.1.1 Cheon-Kim-Kim-Song (CKKS). CKKS is a leveled homomor-
phic encryption scheme that supports approximate fixed-point
arithmetic. That is, every CKKS ciphertext has a level (𝑙) associated
with it, which begins from a predetermined 𝐿 and is reduced by 1
after each homomorphic operation on the ciphertext. If the level
of a ciphertext reaches 0, no more homomorphic operations can
be performed on it. The ciphertext level can be increased at this
point using the CKKS bootstrapping scheme, but bootstrapping is
not discussed in this paper.

For a positive integer 𝑀 , let Φ𝑀 (𝑋) be the 𝑀-th cyclotomic
polynomial of degree 𝑁 = 𝜙 (𝑀) . Then, for a chosen plaintext
modulus 𝑞, a CKKS plaintext is defined as a polynomial in R =

Z𝑞 [𝑋]/(Φ𝑀 (𝑋)). Let H = {(𝑧 𝑗) 𝑗∈Z∗
𝑀

: 𝑧− 𝑗 = 𝑧 𝑗 ,∀𝑗 ∈ Z∗𝑀 } ⊆
CΦ(𝑀) . Furthermore, 𝑇 is a subgroup of the multiplicative group
Z∗
𝑀

satisfying Z∗
𝑀
/𝑇 = {±1}. Let 𝜋 : H→ C𝜙 (𝑀)/2 be the natural

projection that sends a plaintext polynomial𝑚(𝑋) ∈ R to a vector
(𝑧 𝑗) 𝑗∈𝑇 . The ciphertext space is R𝑘𝑞𝑙 where 𝑙 is the level of the
ciphertext, 𝑞𝑙 is the ciphertext modulus at level 𝑙 , and 𝑘 is some
fixed integer. A fresh ciphertext that has never been operated on
homomorphically is an element of R2

𝑞𝐿
. Conventionally, we set the

plaintext modulus 𝑞 to equal the fresh ciphertext modulus 𝑞𝐿 . We
may use 𝑞𝐿 to refer to both numbers.

Given a (𝑁 /2)-dimensional vector z of complex numbers, se-
curity parameter 𝜆, scale factor Δ, canonical embedding 𝜎 , and
ciphertext modulus 𝑞𝐿 , the key generation, encoding, decoding,
encryption, and decryption algorithms are defined below. The size
of a CKKS plaintext𝑚 is defined as its canonical embedding norm
| |𝜎 (𝑚) | |∞.
• Ecd(z;Δ) →𝑚(𝑋) = 𝜎−1 (⌊Δ · 𝜋−1 (z)⌉𝜎 (R)) ∈ R

The Avg-Act Swap and Plaintext Overflow Detection in Fully Homomorphic Operations Over Deep Circuits , ,

• Dcd(𝑚;Δ) → z = 𝜋 ◦ 𝜎 (Δ−1 ·𝑚)
• KeyGen(1𝜆) → sk (secret key), pk (public key), evk (evalua-
tion key)
• Enc𝑝𝑘 (𝑚) → c ∈ R𝑘𝑞𝐿 such that ⟨c, 𝑠𝑘⟩ =𝑚 + 𝑒 (mod𝑞𝐿) for
some small error polynomial 𝑒 such that | |𝑒 | |𝑐𝑎𝑛∞ ≪ ||𝑚 | |𝑐𝑎𝑛∞ .
• Dec𝑒𝑣𝑘 (c) →𝑚 = ⟨c, 𝑠𝑘⟩(mod𝑞𝑙) for c at level 𝑙 .

CKKS requires that | |𝑚 | |∞ ≪ 𝑞𝐿 in order to prevent plaintext
overflows. However, the scheme provides no inherent mechanism
to enforce this. While a plaintext overflow is rarely a problem in
the encoding phase, it is possible for | |𝑚 | |∞ to outgrow 𝑞𝐿 deeper
into computations [11]. Hence, we introduce the plaintext overflow
detection scheme in §7.

3.1.2 Ciphertext multiplication. Multiplication between cipher-
texts is one of the most expensive homomorphic operations [42].
Therefore, two natural approaches to speed up CKKS exist: (1) mak-
ing each multiplication cheaper and (2) doing fewer multiplications
in total. The Avg-Act Swap takes the second approach.

For two valid CKKS ciphertexts c = (𝑐0, 𝑐1) and c′ = (𝑐′0, 𝑐
′
1) that

encrypt𝑚 and𝑚′ respectively,

Mult(c, c′) → (𝑐0𝑐
′
0, 𝑐0𝑐

′
0 + 𝑐

′
0𝑐1, 𝑐1𝑐

′
1) (1)

is such that

Decrypt(𝑠𝑘,Mult(c, c′)) →𝑚′ ·𝑚′ .

However, we see that (1) defines the resulting product ciphertext
in terms of 3 polynomials instead of 2. Continuing to operate on this
larger ciphertext exponentially increases the size of the ciphertext
deeper into the circuit. Therefore, we need to perform the following
relinearization and rescaling after every homomorphic multiplica-
tion in CKKS, in order to reduce the size of the product back to 2
polynomials.

3.1.3 Relinearization. Relinearization works with the relineariza-
tion keyRelinKey generated byKeyGen(1𝜆) and some 3-polynomial
ciphertext (𝑐0, 𝑐1, 𝑐2) such that

Relin(RelinKey,(𝑐0, 𝑐1, 𝑐2)) → (𝑑0, 𝑑1)

and
Decrypt(𝑑0, 𝑑1) ≈ Decrypt(𝑐0, 𝑐1, 𝑐2) .

3.1.4 Rescaling. For a ciphertext c ∈ R𝑘𝑞𝑙 at level 𝑙 , and a lower
level 𝑙 ′ < 𝑙 , ⌊

𝑞′
𝑙

𝑞𝑙
c

⌉
← Rescale(c)

such that

⟨c′, 𝑠𝑘⟩ =
𝑞′
𝑙

𝑞𝑙
𝑚 +

𝑞′
𝑙

𝑞𝑙
𝑒 + 𝑒scale (mod 𝑞′

𝑙
)

where 𝑒scale ≤ 𝐵scale as introduced in §7.

3.2 Convolutional neural networks
The Avg-Act Swap involves two commonly used layers in deep neu-
ral networks: the average pooling layer (AvgPool) and the activation
layer (Activation).

Figure 1: AvgPool and activation layers in the Avg-Act Swap

3.2.1 AvgPool. Pooling reduces the complexity of input data to
extract prominent features and is therefore an essential operation in
deep neural networks. As shown in Figure 1, AvgPool with a kernel
size 𝑘 replaces 𝑘 pixels of an image in every kernel location with
the average of the values. Through AvgPool, the model learns the
relative importances of different regions of an image. There exist
other pooling methods like max pooling and global average pooling,
but AvgPool is most compatible to be computed homomorphically.

3.2.2 Activation. An activation function in machine learning is
simply an arithmetic function that is computed on all pixel values
of data equally to extract features from different regions of the data.
Activation functions are often critical in neural networks to learn
non-linearities in the data.

4 THE AVG-ACT SWAP
This section describes the first main contribution of this paper. We
propose the Avg-Act Swap, which is to place AvgPool before Ac-
tivation in neural networks over encrypted data. In doing so, we
reduce by a factor of 𝑘 the number of ciphertext multiplications,
relinearizations, and rescaling operations the model needs to ho-
momorphically compute. In the implementation of the Avg-Act
Swap, Activation is entirely absorbed into the end of AvgPool in
such a way that the layers are now collectively considered the new
AvgPool layer, as shown in Figure 1. In neural networks over unen-
crypted data, it is conventional to place Activation before AvgPool,
as seen in many well-known designs [18, 22, 38]. This design choice
allows the model to learn more patterns in data before its complex-
ities are reduced through pooling. Since multiplying unencrypted
data is not a computationally expensive task, there is no incentive
in unencrypted machine learning tasks to swap the order of Avg-
Pool and Activation and reduce the number of multiplications done.
To do so would come at the cost of drops in accuracy and only a
marginal gain in speed.

However, the multiplication operation in FHE is extremely ex-
pensive. For example, one way to compute the linearly approxi-
mated Hyperbolic Tangent (Tanh) function homomorphically as
𝑥 − 0.333𝑥3 + 0.133𝑥5 requires 3 ciphertext multiplications, 3 re-
linearization operations, and 5 rescaling operations as shown in
Algorithm 1.

, , Ihyun Nam

Algorithm 1 Computing Tanh homomorphically in CKKS

Require: Ecd, Relin, RS are valid functions to encode complex
numbers into CKKS ciphertexts, relinearize a CKKS ciphertext,
and rescale a CKKS ciphertext, respectively.

coeff1← Ecd(0.333)
coeff2← Ecd(0.133)
power_two← x*x
Relin(power_two)
RS(power_two)

power_three← power_two * x
Relin(power_three)
RS(power_three)

power_five← power_two * power_three
Relin(power_five)
RS(power_five)

term2← coeff1 * power_three
RS(term2)
term3← coeff2 * power_five
RS(term3)
x← x - term2 + term3

return x

We show in §6 that the Avg-Act Swap helps neural networks
to achieve significantly faster encrypted inference speeds while
maintaining high accuracies.

5 CONVOLUTIONAL NEURAL NETWORKS
The key to effectively using the Avg-Act Swap is to minimize the
drop in accuracy after swapping the order of Activation and Avg-
Pool.We therefore design the following 5- and 8-layer convolutional
neural networks (CNN), which utilize the Avg-Act Swapwhile main-
taining accuracies similar to their equivalents without the Avg-Act
Swap (see §6 for performance evaluations).

5.1 5-layer CNN
We define CNN5,trad as shown below, which is a 5-layer CNN that
places Activation before AvgPool like in most traditional neural
networks over unencrypted data.

(1) Convolutional Layer. Receives an encrypted image of size (1,
28, 28). Kernel size is 5, stride is 5, and number of output
channels is 4. Therefore, the output image is of size (4, 24,
24).

(2) Activation.Apply activation to every pixel of the input image.
Therefore, the output image is of size (4, 24, 24).

(3) AvgPool Layer. Kernel size is 4 and stride is 4. Therefore, the
output image is of size (4, 6, 6).

(4) Flatten Layer. Flatten the input image to one dimension.
Therefore, the output image is of size (4*6*6) = (144).

(5) Linear Layer. The number of input features is 144 and that
of output features is 10. Therefore, the output data is of size
(10).

To apply the Avg-Act Swap to CNN5,trad, we simply switch the
order of AvgPool and Activation from CNN5,trad and get CNN5,swap
as shown in Figure 2. We choose 𝑘 = 4 for the kernel size in
both CNN5,trad and CNN5,swap, which yields the lowest (12.02%)
reduction in encrypted inference time fromCNN5,trad to CNN5,swap.
Our provided models therefore show the most conservative results,
and choosing other kernel sizes (𝑘 = 1, 2, 3, 5) may lead to even
larger increases in speed, as we show empirically in §6. The accuracy
of CNN5,swap is 99%, which is comparable to that of many existing
classifiers of encrypted images [1, 16, 21, 31].

5.2 8-layer CNN
In this section we introduce a deeper neural network that is suitable
for more complicated tasks, such as classifying more complicated
images. CNN8,trad as defined below is made of two convolutional
blocks and a final linear layer to format the output as 10 probability
classes.

(1) Convolutional Layer 1. Receives an encrypted image of size
(1, 28, 28). Kernel size is 5, stride is 5, and number of output
channels is 4. Therefore, the output image is of size (4, 24,
24).

(2) Activation 1. Apply activation to every pixel of the input
image. Therefore, the output image is still of size (4, 24, 24).

(3) AvgPool Layer 1. Kernel size is 2 and stride is 2. Therefore,
the output image is of size (4, 12, 12).

(4) Convolutional Layer 2. The number of input channels is 4
and the number of output channels is 12. Kernel size is 5 and
stride is 5. Therefore, the output image is of size (12, 8, 8).

(5) Activation 2. Apply activation to every pixel of the input
image. Therefore, the output image is still of size (12, 8, 8).

(6) AvgPool Layer 2. Kernel size is 2 and stride is 2. Therefore,
the output image is of size (12, 4, 4).

(7) Flatten Layer. Flatten the input image to one dimension.
Therefore, the output image is of size (12*4*4) = (192).

(8) Linear Layer. The number of input features is 192 and that
of output features is 10. Therefore, the output data is of size
(10).

Apply the Avg-Act Swap to the second convolutional block to
obtain CNN8,swap, whose structure is shown in Figure 3. We do not
apply the Avg-Act Swap to the first convolutional block, because
doing so drops the accuracy to an unreasonable value. Experimen-
tal results in §6 show that even one Avg-Act Swap in CNN8,trad
reduces the encrypted inference time by up to 39.44% for the Square
activation function.

5.3 Making CNNs FHE-friendly
We take a few measures to make the CNNs work homomorphically
on encrypted data.

5.3.1 Quantization. FHE is only compatible with integers. There-
fore, we use the following linear approximations of two of the most
widely used polynomial activation functions in the FHE-friendly
versions of our CNNs. Most extensive tests are done using the

The Avg-Act Swap and Plaintext Overflow Detection in Fully Homomorphic Operations Over Deep Circuits , ,

Figure 2: The structure of CNN5,swap

Figure 3: The structure of CNN8,swap

Square activation function, since it is used in multiple CNN en-
crypted inference tasks [2, 19, 24] in place of more complex activa-
tion functions that may be too expensive to compute homomorphi-
cally.
• The Square activation function is used as it is, as

𝑥2 .

• The Tanh function is
𝑒2𝑥 − 1
𝑒2𝑥 + 1

,

bounded in the range (-1,1). To train both our models and
for encrypted inference, we linearly approximate the Tanh
function as

𝑥 − 0.333𝑥3 + 0.133𝑥5 .

5.3.2 Client-Server interaction. There are two parties involved in
our FHE computation: a client and a server. Like in many practical
applications of FHE, we assume the client (the data owner) wants
to outsource the processing of their data to an untrusted server

without revealing the content of their data. In our implementa-
tions, the client generates its CKKS key pair. It uses the keys with
CKKS encoding and encryption schemes to turn its images repre-
sented as complex numbers into ciphertexts. The server obtains
the ciphertexts, homomorphically classifies them using one of the
FHE-friendly CNNs, and returns the encrypted classification results
to the client. The client decrypts the results with its CKKS private
key. Notice that the server does not have access to the client’s pri-
vate key and therefore at no point during the processing of the
encrypted images is the server able to decrypt the images being
processed.

6 AVG-ACT SWAP PERFORMANCE
EVALUATION

In this section, we report results of experiments that test the perfor-
mance of the 5- and 8-layer CNNs. Accuracy is measured based on
classifications of 100 encrypted MNIST test images and encrypted
inference time is the average time needed to classify 10 encrypted

, , Ihyun Nam

Table 1: CKKS encryption parameters for FHE-friendly CNNs
with Square activation

CKKS Parameter Value

Scale factor 230

Modulus chain {31, 30[*8] 31}
Polynomial modulus 214

Number of plaintexts one ciphertext encodes 213
Number of possible multiplications 9

MNIST test images, one image at a time. Unless otherwise speci-
fied, all experiments were conducted on an e2-standard-32 machine
with 32 vCPUs and 128GB of memory. The CPU platform is Intel
Broadwell.

6.0.1 Machine learning implementation. We use PyTorch [34] to
implement the neural networks and Pyfhel [23] to translate the
neural network layers to their FHE-friendly equivalents. Pyfhel
uses Microsoft SEAL [30] and OpenFHE [4] for backend support.

6.0.2 FHE implementation. We implement CKKS using PyCrCNN
[14]. PyCrCNN depends on Pyfhel library v2.0.1, Laurent (SAP)
and Onen (EURECOM) in the backend. We use the following CKKS
encryption parameters for all instances of the FHE-friendly CNNs
using the Square activation function.

The 30[*8] in the modulus chain means 30 repeated 8 times. Us-
ing 230 as the scale factor is common in many toy implementations
of CKKS [11, 41]. The modulus chain begins and ends with a factor
slightly larger than the exponent of the scale factor, while the inter-
mediate factors, totaling the maximum number of multiplications
to be performed, are set to equal the scale factor exponent, as rec-
ommended in [10]. The actual maximum number of multiplications
needed is less than 9 in most instances of our CNNs. For exam-
ple, both the 8-layer CNN with Square activation and the 5-layer
CNN with Tanh activation require a maximum of 7 homomorphic
operations. However, we assign a few more moduli in the chain
to account for any variables during computation and ensure an
uninterrupted processing, as is the practice in many real-world
FHE applications. Using a longer modulus chain than what is ab-
solutely required slows down the encrypted inference; therefore,
the proposed CNNs working with a tighter CKKS parameters could
potentially lead to an increased speed.

6.0.3 Training and testing. We train the CNNs using 60,000 unen-
crypted MNIST train images. We then test the models using 10,000
unencryptedMNIST test images to check themodels’ accuracywith-
out FHE. To test the accuracy of the models with FHE, we make
them FHE-friendly using PyCrCNN and classify 100 encrypted
MNIST test images with them.

In the FHE-friendly models, various parameters for neural lay-
ers, such as weights and bias for the convolutional layer, are first
retrieved from the model trained on unencrypted images and then
encrypted using the client’s public key. The parameters can then
be computed with encrypted data homomorphically as needed in
the layers. The server must use the public key generated by the
client to do so, because homomorphic operations can only be done
on ciphertexts generated in the same cryptographic context.

We measure two real times for testing: (1) the sum of time taken
in each neural layer except for the flatten layer (the total encrypted
inference time) and (2) the time needed to complete AvgPool and
Activation involved in the Avg-Act Swap (the total Avg-Act time).
For both (1) and (2), we report the average time for processing 10
encrypted MNIST images, one at a time.

6.1 Performance of the 5-Layer CNN
In this section, we test how deploying the Avg-Act Swap in the
5-layer FHE-friendly CNNs affects the accuracy and the encrypted
inference time of the models. Stride is always set equal to the kernel
size, which is the default option from PyTorch. As seen in Table 2,
the Avg-Act Swap used with the Square activation function (‘Swap’)
achieves a 25.67% shorter encrypted inference time with a 98% accu-
racy, compared to its companion model (‘Trad’) without the Swap
when 𝑘 = 2. Furthermore, the combined time of AvgPool and Acti-
vation is reduced by up to 95.70%. We also see that the FHE-friendly
CNN has only a small difference in accuracy from the plain model
(‘Plain’) classifying unencrypted images. These results demonstrate
that the Avg-Act Swap achieves significant speed improvements
with marginal or no drops in accuracy. Performance evaluations
using the Tanh activation function instead of the Square activation
function are reported in Appendix A. Most notably, the Tanh activa-
tion used with AvgPool of kernel size 3 achieves a 47.63% increase
in encrypted inference speed with a 96% accuracy. This shows that
the Avg-Act Swap can support high-degree polynomial functions
with high accuracy.

6.2 Performance of the 8-Layer CNNs
The test results from this section show that the Avg-Act Swap is
able to support deeper neural networks. The 8-layer model achieves
similar speed improvements as the 5-layer CNN with the Avg-Act
Swap and with at most a 3% drop in accuracy.

6.3 Applying the Avg-Act Swap to Lenet-5
In this section, we demonstrate the usefulness of the Avg-Act Swap
as a deployable tool by showing that the technique reduces the
encrypted inference time of Lenet-5 [26] (or in short, Lenet) by
28.6%. Lenet is made of 9 layers of convolutional, AvgPool, Tanh
activation, and linear layers. Because Lenet remains manageable
even with expensive homomorphic operations and all its layers can
be implemented with FHE, Lenet makes a good case study to test
the performance of the Avg-Act Swap. The structure of Lenet is
reproduced below.

(1) Image preprocessing.MNIST images of size 28× 28 are padded
to become 32 × 32.

(2) Convolutional layer 1. Receives an encrypted image of size
(1,32,32). Kernel size is 5, stride is 1, and the number of output
channels is 6. Therefore, the otput image is of size (6, 28, 28).

(3) Tanh activation 1.Apply Tanh activation to every pixel of the
input image. Therefore, the output image is of size (6,28,28).

(4) Average pool 1. Kernel size is 2 and stride is 2. Therefore, the
output image is of size (6, 14, 14).

(5) Convolutional layer 2. The number of input channels is 6 and
the number of output channels is 16. Kernel size is 5 and
stride is 1. Therefore, the output image is of size (16,10,10).

The Avg-Act Swap and Plaintext Overflow Detection in Fully Homomorphic Operations Over Deep Circuits , ,

Table 2: Encrypted inference times (sec) of 5-layer CNNs using Square activation

Kernel size Total encrypted inference time Total Avg-Act time
Trad. Swap % decrease Trad. Swap % decrease

2 555.61 413.00 25.67 105.71 4.55 95.70
3 524.55 423.63 19.24 105.75 15.06 85.76
4 493.61 432.38 12.40 111.80 9.77 91.26
5 509.70 411.13 19.34 104.28 4.58 95.60

Table 3: Accuracies (%) of the 5-layer CNNs using Square
activation

Kernel
size

Traditional accuracy Swap accuracy
Plain FHE % change Plain FHE % change

2 99 99 0 97.64 98 0
3 98.17 99 1 97.13 100 3
4 97.88 100 2 96.36 99 3
5 96.96 98 1 94.18 98 4

(6) Tanh activation 2.Apply Tanh activation to every pixel of the
input image. Therefore, the output image is of size (16,10,10).

(7) Average pool 2. Kernel size is 2 and stride is 2. Therefore, the
output image is of size (16,5,5).

(8) Convolutional layer 3. The number of input channels is 16
and the number of output channels is 120. Kernel size is 5 and
stride is 1. Therefore, the output image is of size (120,1,1).

(9) Flatten layer. Flatten the input image to one dimension. There-
fore, the output image is of size (120*1*1)=(120).

(10) Linear layer 1. The number of input features is 120 and that
of output features is 84. Therefore, the output image is of
size (84).

(11) Linear layer 2. The number of input features is 84 and that of
output features is 10. Therefore, the output image is of size
(10).

We apply the Avg-Act Swap to Lenet by swapping Tanh acti-
vation 2 and average pool 2, and call the new model Lenetswap.
Similarly to our design of CNN8,swap, we Avg-Act Swap only the
later occurrence of activation and AvgPool to maintain a reasonable
accuracy.

6.3.1 FHE implementations. To support the increased circuit depth
and subsequently more homomorphic operations, we choose in-
creased CKKS encryption parameters as shown in Table 6 to imple-
ment FHE-friendly Lenet and Lenetswap.

6.3.2 Performance. Below, we compare the performance (in terms
of encrypted inference speed) of Lenetswap to that of Lenet. The
experiments reported in these section were conducted on a c3-
standard-88 machine with 88 vCPUs and 352GB of memory. The
CPU platform is Intel Sapphire Rapids.

We see from Figure 4 that Lenetswap achieves a 28.58% reduc-
tion in encrypted inference time compared to Lenet, and a 76.06%
reduction in the total combined time for the second occurrence
of AvgPool and Activation. While Lenet achieves a 100% accuracy,
Lenetswap achieves a 90% accuracy in classifying 100 encrypted

Figure 4: Lenet and Lenetswaptime measurements

MNIST images. While Lenetswap is less accurate than our 5- and 8-
layermodels, its accuracy is still comparable to that ofmany privacy-
preserving machine learning models [5, 36, 37]. This demonstrates
that the Avg-Act Swap may be deployed in existing deep learn-
ing models to significantly speed up encrypted inference when
processing encrypted data.

7 PLAINTEXT OVERFLOW DETECTION IN
CKKS

In this final section of the paper, we introduce the first formalized
method to detect plaintext overflow after homomorphic operations.
In CKKS, one plaintext encodes 𝑁 /2 complex numbers. If any one
of the numbers grows larger than the plaintext modulus, all 𝑁 /2
numbers are wiped out to lose meaning. While only a few homo-
morphic operations are not likely to cause a plaintext overflow since
the modulus is often a large power of 2, overflow is a possibility in
deep circuits where a single plaintext goes throughmany operations.
We consider the following use case for our method.
• A remote server has a series of private homomorphic opera-
tions that is not known beforehand to the client.
• A client wishes to outsource its encrypted data to the server
and retrieve the encrypted result of the server’s operations
performed on its data.

In addition to the CKKS preliminaries introduced in §3, we re-
produce here the formal definitions of plaintext errors as intro-
duced in [10]. A full CKKS ciphertext is defined as (c, 𝑙, 𝑣, 𝐵) where
c = (c0, c1) is the polynomial ciphertext, 𝑙 is the level of the cipher-
text, 𝑣 is some upper bound of the underlying plaintext𝑚 such that
| |𝑚 | |𝑐𝑎𝑛∞ ≤ 𝑣 , and 𝐵 is the error bound of c. The error bound of a

, , Ihyun Nam

Table 4: Encrypted inference times (sec) of 8-layer CNNs using Square activation

Kernel size Total encrypted inference time Total Avg-Act time
Trad. Swap % decrease Trad. Swap % decrease

2 945.47 572.60 39.44 11.25 1.53 86.40
3 854.57 572.19 33.04 11.21 1.48 86.78
4 860.62 572.81 33.44 11.06 1.00 90.95
5 848.22 567.75 33.06 11.12 0.29 97.37

Table 5: Accuracies (%) of the 8-layer CNNs using Square
activation

Kernel
size

Traditional accuracy Swap accuracy
Plain FHE % change Plain FHE % change

2 99 99 0 98.78 98 -1
3 98.02 98 0 97.43 98 0
4 98.50 99 0 97.63 96 -2
5 96.41 97 0 94.63 97 2

Table 6: CKKS encryption parameters for Lenetswap

CKKS Parameter Value

Scale factor 230

Modulus chain {31, 30[*15] 31}
Polynomial modulus 215

Number of plaintexts one ciphertext encodes 214

Number of possible multiplications 16

fresh ciphertext is equivalent to the encryption noise and is com-
puted as 𝐵clean = 8

√
2𝜎𝑁 + 6𝜎

√
𝑁 + 16𝜎

√
ℎ𝑁 where ℎ = ℎ(1𝜆, 𝑞𝐿)

is an integer chosen while the client generates its keys, and 𝜎 is the
square root of the variance of each coefficient of𝑚. The relative er-
ror of a ciphertext is defined as 𝛽 = 𝐵/𝑣 . After every homomorphic
operation, the value of 𝐵 is changed in a predetermined way intro-
duced in [10], depending on the type of the operation. Therefore, it
is possible to estimate the resulting value of 𝛽 after a known series
of homomorphic operations on the ciphertext.

7.1 Overflow Detection
We propose a method that the client can use to detect overflows in
their plaintexts. This protocol has IND-CPA security as required
by FHE, but does not guarantee server privacy, as is also the case
in FHE. In our protocol, the server has three sets of homomorphic
operations defined as follows.
• The actual operations. These are the operations that the
server wishes to perform on the client’s data. For example,
this can be the functions involved in image classification.
• The maximum error bound operations. These are the
operations to compute the final error bound 𝐵result of a ci-
phertext after performing the actual operations on it. For
example, if the actual operation is rescaling a ciphertext
(c1, 𝑙, 𝑣1, 𝐵1) from level 𝑙 to 𝑙 ′, the rescaled ciphertext be-
comes (c2, 𝑙 ′, 𝑝𝑙−𝑙

′ · 𝑣, 𝑝𝑙−𝑙 ′) [10].

• The relative error operations. These are the operations
to compute the theoretical relative error of a ciphertext after
performing the actual operations on it. For example, if the
actual operation ismultiplying (c1, 𝑙, 𝑣1, 𝐵1) and (c2, 𝑙, 𝑣2, 𝐵1),
then the error bound operation computes

𝛽′ = 𝛽1 + 𝛽2 + 𝛽1𝛽2 +
𝐵mult (𝑙) + 𝑝𝑙−𝑙

′ · 𝐵scale
𝑣1𝑣2

.

The server homomorphically computes themaximum error bound
and relative error of the ciphertext after it goes throughmany homo-
morphic operations. These values have to be computed separately
from the actual ciphertext because the tag information (𝑙 , 𝑣 , 𝐵) are
not encoded into the ciphertext, but are instead conceptual fea-
tures that describe the ciphertext. Computing three separate sets
of homomorphic operations is extremely expensive for the server.
Parallelizing these three operations, by means such as making the
tag information an inherent part of the CKKS ciphertext through
some packing, is a natural extension to this work.

Specifically, the client and the server engages in the following
interaction to facilitate the overflow detection on the client’s side.

(1) The client encrypts its message𝑚 as ciphertext 𝑐 . The client
also encrypts 𝐵clean, 𝜎 , 𝑁 , ℎ, 𝑣1, and 𝑣2 as 𝐶𝐵clean , 𝑐𝜎 , 𝑐𝑁 ,
𝑐ℎ , 𝑐𝑣1 , and 𝑐𝑣2 respectively. The client sends all encrypted
values to the server.

(2) The server computes Algorithm 2.
(3) The client detects a potential overflow in its plaintext through

Algorithm 3.

Algorithm 2 Homomorphic computations by the server
Require: Receive c1, c2,𝐶𝐵clean , 𝑐𝜎 , 𝑐𝑁 , 𝑐ℎ, 𝑐𝑣1 , and 𝑐𝑣2 from the

client.
1. Actual homomorphic operations
cmult ← Mult𝑒𝑣𝑘 (c1, c2)
cresult ← RS𝑙→𝑙 ′ (cmult)
return cresult

2. Maximum error bound operations
𝐵ks ← 8𝜎𝑁 /

√
3

𝐵scale ←
√︁
𝑁 /3 · (3 + 8

√
ℎ)

𝐵mult (𝐿 − 1) ← 𝑝𝑙
′−𝑙 · 𝑞𝑙 · 𝐵ks + 𝐵scale

𝐵result ← 𝑣1𝐵2 + 𝑣2𝐵1 + 𝐵1𝐵2 + 𝐵mult (𝐿 − 1)
return 𝐵result

3. Relative error operations
𝛽result ← 𝛽1 + 𝛽2 + 2−𝐿−2

return 𝛽result

The Avg-Act Swap and Plaintext Overflow Detection in Fully Homomorphic Operations Over Deep Circuits , ,

Relinearization is considered a part of multiplication and the
errors accumulating after the two operations are computed together.

Algorithm 3 describes the actions of the client to detect the
plaintext overflow, beginning from when the client receives the
homomorphically computed ciphertext, error bound, and relative
error bound from the server.

Algorithm 3 Plaintext overflow detection by the client
Require: Client receives cresult, 𝐵result, and 𝛽result from the server,

all computed through algorithm 2.
𝑚 + 𝑒 ← Dec(cresult)
𝐵 ← Dec(𝑐𝐵result)
𝛽 ← Dec(𝑐𝛽result)
𝛽′ ← 𝐵/𝑣
if 𝛽′ > 𝛽 then

Plaintext overflow detected in cresult
else
No plaintext overflow detected in cresult

end if

We assume that the inherent noise handling in CKKS works
correctly, and therefore the condition 𝛽′ > 𝛽 is only triggered by a
plaintext overflow, and not an actual noise explosion in the plaintext.
A correct canonical embedding for CKKS encoding ensures that the
small errors inserted in plaintexts do not blow up during encoding
and decoding. Furthermore, homomorphic additions do not incur a
significant increase in error. Homomorphic multiplications cause
a noticeable raise in plaintext noise, but the rescaling operation
reduces the noise back to a manageable level by dividing it by a
scale factor.

7.1.1 Possible overflow in maximum error bounds. The initial error
bound 𝐵clean is encrypted in the same cryptographic context as
the actual message 𝑚 and therefore is subject to the same over-
flow problem. If the error bound overflows during the maximum
error bound operations of the server, then the overflow detection
fails. However, we show that the probability of this happening is
negligible, without formal proofs. Because | |𝑒 | |𝑐𝑎𝑛∞ ≪ ||𝑚 | |𝑐𝑎𝑛∞ ≪ 𝑞

and 𝐵clean are true, it follows, with some abuse of notation, that
𝐵clean ≪ ||𝑚 | |𝑐𝑎𝑛∞ . Therefore, the probability of 𝐵 growing larger
than 𝑞 insignificant in all implementations of CKKS that correctly
follow the recommended parameter setup of the original scheme.

We pay a closer attention to the error bound of a product of
two ciphertexts. Multiplying (c1, 𝑙, 𝑣1, 𝐵1) and (c2, 𝑙, 𝑣2, 𝐵2) gives
(cmult, 𝑙, 𝑣1𝑣2, 𝑣1𝐵2 + 𝑣2𝐵1 + 𝐵1𝐵2 + 𝐵mult (𝑙)) where 𝐵mult (𝑙) is de-
fined as 𝑃−1 ·𝑞𝑙 ·𝐵𝑘𝑠 +𝐵scale . Since in CKKS, 𝑞𝑖 ≈ 𝑞𝑖+1

Δ and 𝑞𝑙 ≠ 𝑞𝐿 ,
we conclude that 𝑞𝑙 < 𝑞𝐿 . Furthermore, in the implementation
of CKKS in [10], it is stated that 𝑃 · 𝑞𝐿 is the largest modulus to
generate an evaluation key and it suffices to assume that 𝑃 is ap-
proximately equal to𝑞𝐿 . Therefore, 𝑃−1 ·𝑞𝑙 ≪ 𝑞𝐿 and the possibility
of 𝐵scale overflowing 𝑞𝐿 in all practical applications of our scheme
is negligieble.

7.1.2 Possible overflow in relative error bounds. The relative error
bounds are defined for addition and multiplication. The addition
of ciphertexts with relative error bounds 𝛽𝑖 results in a ciphertext
whose error is bounded by max𝑖 𝛽𝑖 . Since the 𝑣𝑖 of fresh ciphertexts

are less than 𝑞𝐿 , it is easy to see that additions do not produce
ciphertexts with incorrect relative error bounds due to overflown
𝑣𝑖 . The max𝑖 𝛽𝑖 = 𝐵𝑖

𝑣𝑖
chosen for any sums would have 𝑣𝑖 < 𝑞𝐿 and

therefore be correct with no overflow.
The product of ciphertexts with relative error bounds 𝛽1 and 𝛽2

produces a new relative error bound

𝛽′ = 𝛽1 + 𝛽2 + 𝛽1𝛽2 +
𝐵mult (𝑙) + 𝑝𝑙−𝑙

′ · 𝐵scale
𝑣1𝑣2

.

We take a result derived in [10], which states that

𝛽1𝛽2 +
𝐵mult (𝑙) + 𝑝𝑙−𝑙

′ · 𝐵scale
𝑣1𝑣2

≤ 𝛽∗

for some constant 𝛽∗ ≤ 2−𝐿−2 . This condition ensures that the
ciphertext remains decryptable after evaluation of circuits of depth
less than 𝐿 − 1. Therefore, we approximate the relative error bound
of a product as

𝛽′ ≤ 𝛽1 + 𝛽2 + 2−𝐿−2

in the homomorphic relative error operations of the server. Doing
so ensures that the computed relative error bound is correct without
a possible overflow in computing 𝑣1𝑣2 and 𝐵scale.

7.1.3 IND-CPA security. A homomorphic encryption scheme en-
sures IND-CPA security. That is, a probabilistic polynomial time
adversary has only negligible advantage over random guessing to
distinguish between ciphertexts of two distinct plaintexts (see §B
for a formal definition). Our proposed overflow detection proto-
col respects IND-CPA security, because all additional parameters
provided by the client to the server for the detection protocol are
encrypted just like the client’s plaintext. The server learns no ad-
ditional information about the client’s plaintext, compared to in
an FHE scheme without our protocol. This is true even when the
server learns whether the client detected a plaintext overflow or
not through, for example, the client’s subsequent behaviors.

7.1.4 Extensibility. Our plaintext overflow detection protocol can
be modified to be used in other fixed-point arithmetic FHE schemes
with notions of error similar to those of CKKS. For example, in
the encryption schemes for BGV and BFV, the client samples two
error terms 𝑒1 and 𝑒2 from a known error distribution 𝜒 . To keep
the noise under control, BFV and BGV define the size of noise re-
sulting from each type of homomorphic operation. While BFV and
BGV do not explicitly define relative error like CKKS does, it is
possible for the server to compute the ratio of maximum error to
maximum plaintext size, using the encrypted error terms and plain-
text provided by the client. We may use this ratio as the equivalent
of CKKS’s relative error. Furthermore, unlike in CKKS, the error
terms in BFV and BGV can be separated from the plaintext after
decryption. Therefore, the server only needs to perform two series
of homomorphic operations: the actual operations on the plaintext
and the relative error computations. The client’s task to check for
a plaintext overflow is now reduced to checking whether the ratio
of the separated error term to the retrieved plaintext is larger than
the relative error it received from the server.

8 DISCUSSION
In this section, we discuss methods to strengthen the applicability of
the Avg-Act Swap and suggest a possible experimental methodology

, , Ihyun Nam

to verify and improve our plaintext overflow detection protocol. In
this paper, we tested the speed improvements of using the Avg-Act
Swap by computing the average time taken to classify 10 encrypted
MNIST images. While this decision was made considering the slow-
ness of encrypted inference using FHE and our limited resources,
the Swap can be more thoroughly evaluated with more robust test
sets, such as CIFAR-10 [25] or the full MNIST test set consisting
of 10,000 images. Our plaintext overflow detection protocol is a
work in progress. In particular, it has not been implemented and
tested on real plaintext overflows. To test the protocol’s applica-
bility to real systems, we suggest implementing a CKKS scheme
with a small modulus and applying our protocol while squaring
a known integer repeatedly until it grows larger than the chosen
modulus. A particularly desirable efficiency improvement for our
protocol would be to avoid computing three separate sets of FHE
operations.

9 CONCLUSION
In this work, we presented two separate techniques that improve
the performance and integrity of computing FHE over deep circuits.
The Avg-Act Swap brings us a step closer towards faster machine
learning applications of FHE. While it is a common practice to
perform Activation before AvgPool in neural networks over unen-
crypted data, we showed with experimental results that swapping
the order of the two operations can significantly improve the speed
of encrypted inference at the cost of a small drop in accuracy in care-
fully designed neural networks. Furthermore, by using the Avg-Act
Swap in Lenet-5 and achieving an over 28% reduction in encrypted
inference speed, we showed the potential of the Avg-Act Swap as a
deployable tool in existing neural networks.

Furthermore, we introduced the first formalized plaintext over-
flow detection method in CKKS. Prior to this work, there was no
protocol for a client to find out whether their plaintext overflowed
during homomorphic operations and became meaningless. There-
fore, FHE implementations resorted to setting the plaintext modulus
very large in order to prevent plaintext overflows. While our plain-
text detection scheme does not prevent an overflow or recover the
correct result after an overflow happened, it allows the client to dis-
cern between valid and invalid decryption results. This technique
is particularly useful in ensuring the integrity of data processed
with FHE over deep circuits where an overflow is more likely and
it is difficult to estimate the circuit depth.

REFERENCES
[1] Anish Acharya, Abolfazl Hashemi, Prateek Jain, Sujay Sanghavi, Inderjit S.

Dhillon, and Ufuk Topcu. 2021. Robust training in high dimensions via block
coordinate geometric median descent. https://arxiv.org/abs/2106.08882

[2] Ahmad Al Badawi, Chao Jin, Jie Lin, Chan Fook Mun, Sim Jun Jie, Benjamin
Hong Meng Tan, Xiao Nan, Khin Mi Mi Aung, and Vijay Ramaseshan Chan-
drasekhar. 2020. Towards the alexnet moment for homomorphic encryption:
Hcnn, the first homomorphic cnn on encrypted data with gpus. IEEE Transactions
on Emerging Topics in Computing 9, 3 (2020), 1330–1343.

[3] Wilson Abel Alberto Torres, Nandita Bhattacharjee, and Bala Srinivasan. 2015.
Privacy-preserving biometrics authentication systems using fully homomorphic
encryption. International Journal of Pervasive Computing and Communications
11, 2 (2015), 151–168. https://doi.org/10.1108/ijpcc-02-2015-0012

[4] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja
Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo
Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.V.,
Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod
Vaikuntanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Ho-
momorphic Encryption Library. Cryptology ePrint Archive, Paper 2022/915.

https://eprint.iacr.org/2022/915 https://eprint.iacr.org/2022/915.
[5] Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun, Jun Jie Sim, Benjamin

Hong Meng Tan, Xiao Nan, Khin Mi Mi Aung, and Vijay Ramaseshan Chan-
drasekhar. 2018. Towards the AlexNet Moment for Homomorphic Encryption:
HCNN, the First Homomorphic CNN on Encrypted Data with GPUs. Cryptology
ePrint Archive, Paper 2018/1056. https://doi.org/10.1109/TETC.2020.3014636
https://eprint.iacr.org/2018/1056.

[6] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. 2013. Improved
security for a ring-based fully homomorphic encryption scheme. Cryptography
and Coding 8308 (2013), 45–64. https://doi.org/10.1007/978-3-642-45239-0_4

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on Compu-
tation Theory 6, 3 (2014), 1–36. https://doi.org/10.1145/2633600

[8] Sergiu Carpov, Thanh Hai Nguyen, Renaud Sirdey, Gianpiero Constantino, and
Fabio Martinelli. 2016. Practical privacy-preserving medical diagnosis using
homomorphic encryption. 2016 IEEE 9th International Conference on Cloud Com-
puting (CLOUD) (Jun 2016). https://doi.org/10.1109/cloud.2016.0084

[9] Jung Hee Cheon, Anamaria Costache, Radames Cruz Moreno, Wei Dai, Nicolas
Gama, Mariya Georgieva, Shai Halevi, Miran Kim, Sunwoong Kim, Kim Laine,
and et al. 1970. Introduction to homomorphic encryption and Schemes. https:
//link.springer.com/chapter/10.1007/978-3-030-77287-1_1

[10] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomor-
phic Encryption for Arithmetic of Approximate Numbers. In Advances in Cryp-
tology – ASIACRYPT 2017, Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer
International Publishing, Cham, 409–437.

[11] Sangeeta Chowdhary,Wei Dai, Kim Laine, and Olli Saarikivi. 2021. EVA Improved:
Compiler and Extension Library for CKKS. In Proceedings of the 9th on Workshop
on Encrypted Computing & Applied Homomorphic Cryptography (Virtual Event,
Republic of Korea) (WAHC ’21). Association for Computing Machinery, New
York, NY, USA, 43–55. https://doi.org/10.1145/3474366.3486929

[12] Xu Cui, Hao Liu, Min Tang, and Yihong Ma. 2023. A Medical Pre-diagnosis
Scheme Based on Neural Network and Inner Product Function Encryption. In
2023 4th International Conference on Electronic Communication and Artificial
Intelligence (ICECAI). IEEE, IEEE, Guangzhou, China, 93–97.

[13] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[14] Simone Disabato, Alessandro Falcetta, Alessio Mongelluzzo, and Manuel Roveri.
2020. A Privacy-Preserving Distributed Architecture for Deep-Learning-as-a-
Service. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE,
1–8.

[15] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Paper 2012/144. https:
//eprint.iacr.org/2012/144

[16] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional sequence to sequence learning. https://arxiv.org/abs/1705.
03122

[17] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University.

[18] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceedings of The 33rd Inter-
national Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR,
New York, New York, USA, 201–210. https://proceedings.mlr.press/v48/gilad-
bachrach16.html

[19] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceedings of The 33rd Inter-
national Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR,
New York, New York, USA, 201–210. https://proceedings.mlr.press/v48/gilad-
bachrach16.html

[20] Marta Gomez-Barrero, Emanuele Maiorana, Javier Galbally, Patrizio Campisi, and
Julian Fierrez. 2017. Multi-biometric template protection based on homomorphic
encryption. Pattern Recognition 67 (2017), 149–163. https://doi.org/10.1016/j.
patcog.2017.01.024

[21] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, ChristianW.
Omlin, and Geir Thore Berge. 2019. The convolutional Tsetlin Machine. https:
//arxiv.org/abs/1905.09688

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[23] Alberto Ibarrondo and Alexander Viand. 2021. Pyfhel: Python for homomor-
phic encryption libraries. In Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. Association for Computing
Machinery, New York, NY, USA, 11–16.

[24] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. 2018. Secure Out-
sourced Matrix Computation and Application to Neural Networks. In Proceedings

https://arxiv.org/abs/2106.08882
https://doi.org/10.1108/ijpcc-02-2015-0012
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://doi.org/10.1109/TETC.2020.3014636
https://eprint.iacr.org/2018/1056
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1145/2633600
https://doi.org/10.1109/cloud.2016.0084
https://link.springer.com/chapter/10.1007/978-3-030-77287-1_1
https://link.springer.com/chapter/10.1007/978-3-030-77287-1_1
https://doi.org/10.1145/3474366.3486929
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://arxiv.org/abs/1705.03122
https://arxiv.org/abs/1705.03122
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1016/j.patcog.2017.01.024
https://doi.org/10.1016/j.patcog.2017.01.024
https://arxiv.org/abs/1905.09688
https://arxiv.org/abs/1905.09688
https://arxiv.org/abs/1512.03385

The Avg-Act Swap and Plaintext Overflow Detection in Fully Homomorphic Operations Over Deep Circuits , ,

of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 1209–1222. https://doi.org/10.1145/3243734.3243837

[25] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
(2009), 32–33. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324. https:
//doi.org/10.1109/5.726791

[27] Seunghwan Lee and Dong-Joon Shin. 2022. Overflow-detectable Floating-point
Fully Homomorphic Encryption. Cryptology ePrint Archive, Paper 2022/186.
https://eprint.iacr.org/2022/186 https://eprint.iacr.org/2022/186.

[28] Xiaodong Li, QingHan, and Xin Jin. 2018. A Secure and Efficient Face-Recognition
Scheme Based on Deep Neural Network and Homomorphic Encryption. In 2018
International Conference on Virtual Reality and Visualization (ICVRV). IEEE, Qing-
dao, China, 53–57. https://doi.org/10.1109/ICVRV.2018.00017

[29] Zhen Liu, Yanbin Pan, and Tianyuan Xie. 2018. Breaking the hardness assumption
and ind-CPA security of HQC submitted to NIST PQC Project. Cryptology and
Network Security (2018), 344–356. https://doi.org/10.1007/978-3-030-00434-7_17

[30] Microsoft. 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[31] Maryam Mirsadeghi, Majid Shalchian, Saeed Reza Kheradpisheh, and Timothée
Masquelier. 2021. Spike time displacement based error backpropagation in con-
volutional spiking neural networks. https://doi.org/10.48550/arXiv.2108.13621

[32] Sonam Mittal, Priya Jindal, and K. R. Ramkumar. 2021. Data Privacy and System
Security for Banking on Clouds using Homomorphic Encryption. In 2021 2nd
International Conference for Emerging Technology (INCET). IEEE, 1–6. https:
//doi.org/10.1109/INCET51464.2021.9456345

[33] Vishnu Naresh Boddeti. 2018. Secure Face Matching Using Fully Homomor-
phic Encryption. In 2018 IEEE 9th International Conference on Biometrics The-
ory, Applications and Systems (BTAS). IEEE, Redondo Beach, CA, USA, 1–10.
https://doi.org/10.1109/BTAS.2018.8698601

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., Vancouver, Canada, 8024–8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[35] Robert Podschwadt, Daniel Takabi, Peizhao Hu, Mohammad H. Rafiei, and
Zhipeng Cai. 2022. A Survey of Deep Learning Architectures for Privacy-
Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access
10 (2022), 117477–117500. https://doi.org/10.1109/ACCESS.2022.3219049

[36] Theo Ryffel, Andrew Trask, Morten Dahl, Jonathan Passerat-Palmbach, Daniel
Rueckert, Jason Mancuso, and Bobby Wagner. 2018. A generic framework for
privacy preserving deep learning. (work in progress) (2018).

[37] Mingjia Shi, Yuhao Zhou, Qing Ye, and Jiancheng Lv. 2022. Personal-
ized Federated Learning with Hidden Information on Personalized Prior.
arXiv:2211.10684 [cs.LG]

[38] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks
for large-scale image recognition. https://arxiv.org/abs/1409.1556

[39] Koushik Sinha, Pratham Majumder, and Subhas K. Ghosh. 2020. Fully Homomor-
phic Encryption based Privacy-Preserving Data Acquisition and Computation for
Contact Tracing. In 2020 IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS). 1–6. https://doi.org/10.1109/ANTS50601.
2020.9342834

[40] Shahzaib Tahir, Hasan Tahir, Ali Sajjad, Muttukrishnan Rajarajan, and Fawad
Khan. 2021. Privacy-preserving COVID-19 contact tracing using blockchain.
Journal of Communications and Networks 23, 5 (2021), 360–373. https://doi.org/
10.23919/JCN.2021.000031

[41] Nattaset Tanabodee, Kalika Suksomboon, Chaveee Issariyapat, Sophon Mongkol-
luksamee, Aimaschana Niruntasukrat, Natapon Tansangworn, and Sukumal
Kitisin. 2022. CipherFlow: A playground for developing privacy-preserving IOT
in node-red. Proceedings of the 17th Asian Internet Engineering Conference (2022).
https://doi.org/10.1145/3570748.3570752

[42] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. 2015. Ex-
ploring the Feasibility of Fully Homomorphic Encryption. IEEE Trans. Comput.
64, 3 (2015), 698–706. https://doi.org/10.1109/TC.2013.154

[43] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. 2013. Secure pattern matching using somewhat homomor-
phic encryption. Proceedings of the 2013 ACM workshop on Cloud computing
security workshop (2013). https://doi.org/10.1145/2517488.2517497

[44] Sufang Zhou, Jianing Fan, Xiaoyu Du, Baojun Qiao, and Zhi Qiao. 2022. Effi-
cient Multi-disease Privacy-Preserving Medical Pre-Diagnosis Based on Partial
Homomorphic Encryption. In 2022 12th International Conference on Information
Science and Technology (ICIST). 248–254. https://doi.org/10.1109/ICIST55546.
2022.9926857

A PERFORMANCE EVALUATION OF TANH
ACTIVATION

Below, we report the encrypted inference speed and accuracy of the
Tanh activation function used in the FHE-friendly 5-layer model
with the Avg-Act Swap, compared to the equivalent models without
the Swap. The total encrypted inference time is the average time
of processing 100 encrypted MNIST images, measured from the
beginning of the first convolutional layer to the end of the linear
layer.

Table 7: Accuracies (%) of FHE-friendly 5-layer CNN using
Tanh activation

Kernel
size

Traditional accuracy Swap accuracy
Plain FHE % change Plain FHE % change

2 97.59 99 1 96.23 93 -3
3 97.53 98 0 94.92 96 -1
4 97.35 98 1 96.20 89 -7
5 96.33 100 4 89.22 11 -78

B IND-CPA SECURITY
Given the PKE scheme Π = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) and an adversary A,
we define the following indistinguishability game.

Algorithm 4 Indistinguishablility game 𝑃𝑢𝑏𝐾𝑐𝑝𝑎

A,Π
(𝜆)

(𝑝𝑘, 𝑠𝑘) ← 𝐾𝐺𝑒𝑛(1𝜆)
(𝑚0,𝑚1) ← A(1𝜆, 𝑝𝑘)
𝑏

$←− {0, 1}
c← 𝐸𝑛𝑐 (𝑝𝑘,𝑚𝑏)
𝑏′ ← A(1𝜆, 𝑝𝑘, 𝑐)
return 1 if 𝑏′ = 𝑏 and 0 otherwise.

Definition B.1. [29] A PKE scheme Π is IND-CPA secure if for all
probabilistic polynomial time adversaries A there is a negligible
function 𝑛𝑒𝑔𝑙 (𝜆) such that

𝑃𝑟 [𝑃𝑢𝑏𝐾𝑐𝑝𝑎

A,Π
(𝜆) = 1] ≤ 1

2
+ 𝑛𝑒𝑔𝑙 (𝜆) .

https://doi.org/10.1145/3243734.3243837
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://eprint.iacr.org/2022/186
https://eprint.iacr.org/2022/186
https://doi.org/10.1109/ICVRV.2018.00017
https://doi.org/10.1007/978-3-030-00434-7_17
https://github.com/Microsoft/SEAL
https://doi.org/10.48550/arXiv.2108.13621
https://doi.org/10.1109/INCET51464.2021.9456345
https://doi.org/10.1109/INCET51464.2021.9456345
https://doi.org/10.1109/BTAS.2018.8698601
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/ACCESS.2022.3219049
https://arxiv.org/abs/2211.10684
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ANTS50601.2020.9342834
https://doi.org/10.1109/ANTS50601.2020.9342834
https://doi.org/10.23919/JCN.2021.000031
https://doi.org/10.23919/JCN.2021.000031
https://doi.org/10.1145/3570748.3570752
https://doi.org/10.1109/TC.2013.154
https://doi.org/10.1145/2517488.2517497
https://doi.org/10.1109/ICIST55546.2022.9926857
https://doi.org/10.1109/ICIST55546.2022.9926857

, , Ihyun Nam

Table 8: Encrypted inference times (sec) of 5-layer CNNs using Tanh activation

Kernel
size

Total encrypted inference time Total Avg-Act time
Trad. Swap % decrease Trad. Swap % decrease

2 506.47 329.59 34.92 246.57 59.85 75.73
3 508.03 266.06 47.63 245.84 26.97 89.03
4 500.88 244.44 51.20 246.55 15.21 93.83
5 510.55 242.28 52.54 244.92 7.22 97.05

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Definitions
	3.1 Fully Homomorphic Encryption
	3.2 Convolutional neural networks

	4 The Avg-Act Swap
	5 Convolutional Neural Networks
	5.1 5-layer CNN
	5.2 8-layer CNN
	5.3 Making CNNs FHE-friendly

	6 Avg-Act Swap Performance Evaluation
	6.1 Performance of the 5-Layer CNN
	6.2 Performance of the 8-Layer CNNs
	6.3 Applying the Avg-Act Swap to Lenet-5

	7 Plaintext Overflow Detection in CKKS
	7.1 Overflow Detection

	8 Discussion
	9 Conclusion
	References
	A Performance evaluation of Tanh activation
	B IND-CPA security

