

Ihyun Nam

Email: ihyun@stanford.edu • Cell: (650) 695-3723 • Web: ihyunnam.github.io • LinkedIn: github.com/ihyunnam

EDUCATION	Ph.D. in Computer Science Stanford University <ul style="list-style-type: none">• Cryptography and Systems Security	Fall 2025–3030 (expected)
	M.S. in Computer Science (Computer and Network Security) Stanford University <ul style="list-style-type: none">• CS: Cryptography, Computer Security, Operating Systems, and Distributed Systems	Fall 2024–Winter 2025
	B.S. in Mathematics & Computer Science with Honors (Systems) Stanford University <ul style="list-style-type: none">• CS: Computational Complexity, Algorithms, Mathematical Foundations of Computing• Math: Linear Algebra, Group Theory, Number Theory, Probability, and Metalogic	Fall 2020–Spring 2024
PUBLICATIONS	<ol style="list-style-type: none">1. Ihyun Nam, “The Avg-Act Swap and Plaintext Overflow Detection in Fully Homomorphic Operations Over Deep Circuits,” in the Proceedings of the 14th ACM Conference on Data and Application Security and Privacy, June 2024 (pdf)2. Xiaoyu He, Emily Huang, Ihyun Nam, Rishabh Thaper, “Shuffle Squares and Reverse Shuffle Squares,” appeared in the European Journal of Combinatorics (Vol 116), February 2024 (pdf) <i>*Alphabetical author listing, as is conventional in Mathematics.</i>	
RESEARCH EXPERIENCE	A Sparse Polynomial Commitment Scheme from Lattices (pdf) Advisor: Professor Dan Boneh <ul style="list-style-type: none">• Built the first sparse polynomial commitment scheme from lattices based on a prior field-based scheme, and proved perfect completeness and knowledge soundness• Standardized the scheme to use any (non-sparse) lattice-based PCS in the commit phase and achieve optimal prover costs linear in the polynomial sparsity	Winter 2024–Present Stanford CS
	Authentication Logging to a Public Blockchain (pdf) Advisor: Professors David Mazieres & Emma Dauterman <ul style="list-style-type: none">• Designed a privacy-preserving authentication logging protocol that (1) does not require a trusted log server during enrollment and audit for correct service and (2) guarantees user privacy against a colluding log server and relying party, unlike the state-of-the-art solution larch• Log server does not learn anything about the RP from users' logged records, and a malicious log server cannot authenticate on behalf of a user.• Implemented protocol in Rust, including a bare metal blockchain; <1 second login time expected	Winter 2024–Present Stanford CS
	Faster Fully Homomorphic Encryption with Plaintext Overflow Detection (pdf) Advisor: Professor John Mitchell <ul style="list-style-type: none">• Designed ‘Swap’, a method to transform any traditional neural network to achieve faster encrypted inference on FHE-encrypted data, by averaging data before applying activation functions• Applied the Swap to two neural networks I built for a 25% speedup with 98% accuracy, and to the Lenet-5 neural network for a 28% speedup with 90% accuracy• Devised the first plaintext overflow detection protocol for fixed-point arithmetic FHE and showed applicability to the Cheon-Kim-Kim-Song and BFV/GV schemes• Published and presented results as the solo author at the ACM Conference on Data and Application Security and Privacy (Porto, Portugal, 21% acceptance rate)• Poster presentation at the Symposia for Undergraduate Research and Public Service (Stanford, CA – October 2023)	Spring–Fall 2023 Stanford CS
	Identifying TLS Clients via Unsupervised Learning on Domain Names (pdf) Advisor: Professor Zakir Durumeric <ul style="list-style-type: none">• Built and evaluated Clid: a TLS client identification tool that uses unsupervised learning to map clients to domain names that are most informative of their identity, among prior connections• Designed a client-domain algorithm based on frequency and exclusivity of connections, and clustering to abstract out errors in real data• Clid identifies the most associated domain names for >60% of clients in all test TLS sets	Spring–Summer 2023 Stanford CS
	A Survey of Multivariate Polynomial Commitment Schemes (pdf)	Fall–Winter 2023

Advisor: Professor Dan Boneh	Stanford CS
• Wrote a survey of eight multivariate polynomial commitments schemes and their security analyses	
Shuffle Squares and Reverse Shuffle Squares (pdf)	Summer–Fall 2021
Advisor: Professor Paweł Grzegrzolka	Stanford Math
• Proved the Henshall-Rampersad-Shallit conjecture on enumerating shuffle squares (words containing identical disjoint strings) that was previously only shown with empirical evidence	
• Disproved a companion conjecture on <i>reverse</i> shuffle squares and proved a novel alternative, contributing to efficient error correcting codes in deletion channels	
• Published results at the European Journal of Combinatorics (February 2024)	
• Poster presentation at the Symposia for Undergraduate Research and Public Service (Stanford, CA – October 2021)	
TEACHING	
Math 19 (Calculus) – Stanford University	Fall 2024
Instructor: Zachary Wickham	
• Teaching Assistant: Led office hours (5hrs/week), held exam review sessions, and graded exams for 230 students	
Hack Lab (Introduction to Cybersecurity) – Stanford University	Fall 2023
Instructor: Alex Stamos	
• Teaching assistant: Led lab sections (1hr/week) on exploiting and defending web vulnerabilities, held office hours (1hr/week), and wrote and graded exams for 100 students	
• Lab assistant: Transitioned GCP virtual Kali attack machines and targets to host in a new on-prem Proxmox cluster, to be used by Stanford CS classes and computer security labs	
Stanford University Mathematics Camp – Stanford University	Summer 2023
Instructor: Rick Sommer	
• Teaching Assistant: Advised five crypto research projects (8hrs/week) and led group theory problem sessions (3hrs/day)	
• Residential Counselor: Led social activities and counselled 40 high school students	
Paschar Consulting – Seoul, South Korea	Summer 2021
• Tutor: Mentored high school seniors for college admissions via daily meetings and essay editing	
Bloomsbury Education – Jeju, South Korea	Summer 2020
• Math Tutor: Taught International Baccalaureate Higher Level Math to Year 3–12 students	
• Latin Tutor: Taught iGCSE Latin to Year 9 students	
ACCOLADES	
School of Engineering Fellowship	Fall 2025
Organization: Stanford University	
• Fellowship for top incoming PhD students.	
The Hoefer Prize for Writing in the Major	Spring 2024
Organization: Stanford University	
• One of seven annual recipients chosen for quality of writing in thesis work, nominated by faculty	
• Recognized for CS Honors Thesis on novel research on fully homomorphic encryption	
IORH Blockchain Research Grant	Spring 2024
Organization: Stanford IOG Research Hub	
• Received a \$118K grant for proposed research on authentication logging to a public blockchain	
• Pitched grant to principal investigator and drafted proposal	
Computer Science Honors Program	Spring 2023–2024
Organization: Stanford CS Department	
• One of 16 students accepted to the Honors program in the CS major, through research proposal and faculty recommendation	
• Presented thesis on fully homomorphic encryption to CS faculty at the department colloquium	
Conference Grant	Spring 2024
Organization: Stanford University	
• One of eight recipients of a \$1.5K travel grant to present accepted research at CODASPY '24	
Presidential Science Scholarship	2020–2024

Organization: Korea Student Aid Foundation	<ul style="list-style-type: none"> One of 20 annual recipients of a \$200K college scholarship awarded by the President of Korea Selected for excellence in Math and interest in studying cryptography in university 	
Scholarship for the Richard Tapia Conference for Diversity in Computing	Organization: Stanford CS Department	Summer 2023
	<ul style="list-style-type: none"> One of 18 annual recipients to represent Stanford's CS department through booth 	
Major Grant	Organization: Stanford University	Spring 2023
	<ul style="list-style-type: none"> Received a \$7.5K grant (largest grant for undergraduates, 68% acceptance rate) for 10-week research on fully homomorphic encryption advised by Professor Dan Boneh 	
Talent Award of Korea	Organization: Deputy Prime Minister & Minister of Education of Korea	Winter 2022
	<ul style="list-style-type: none"> One of 50 annual recipients under 34, selected by a faculty committee for excellence in chosen field Recognized for academic work in cryptography and community service for gender minorities 	
LEADERSHIP AND SERVICE	Board Member (2024); Mentee (2020-23)	2020–2024
	Organization: Stanford Women in Math Mentoring	
	<ul style="list-style-type: none"> Led recruiting of 80 members, hosted faculty talks on diversity in Math, and organized three socials 	
Community Outreach Intern	Organization: Stanford Women's Community Center	2021–2022
	<ul style="list-style-type: none"> Hosted welcome for 200 minority students and interviewed 10 women leaders at Stanford for project 	
Volunteer	Organization: Jeju Women's Association	2017–2018, 2024
	<ul style="list-style-type: none"> Helped organize their annual feminist film festival by translating Korean materials to English 	
INDUSTRY	Research Intern (Mobile Game Industry)	Summer 2022
	Organization: Devsisters – Seoul, South Korea	
	<ul style="list-style-type: none"> As an intern on blockchain game team, developed a math model for predicting token prices at decentralized cryptocurrency exchanges (DEX) based on two months of data I collected Presented results and advised C-level team on the quarterly pricing of blockchain game tokens 	
LANGUAGES AND TOOLS	Languages: Rust, Python, C, C++, Java, SQL	
	Tools: BigQuery, Compute Engine, Git, Docker, Vim, Tmux, Wireshark	