Passlog: Private Authentication Logging with Public State

Abstract. Account compromise is challenging to prevent
completely, and so users need to be able to quickly detect
compromise in order to minimize the damage. Authentication
logging systems make it possible for a user to fetch a com-
prehensive list of all logins made to her accounts. However,
existing systems provide authentication logging at the expense
of allowing the log provider to learn sensitive information or
tamper with authentication logs. To address this problem, we
present Passlog, a privacy-preserving authentication logging
system where one or more parties can run the log service,
and any number of parties can audit the log service. In
Passlog, the log record state is public, which enables any
number of parties to maintain and audit the log service,
but does not reveal private information. The challenge is
to hide the identity of the user and web service from the
log service while still allowing the log service to enforce
that every authentication is correctly recorded. We design,
implement, and evaluate Passlog to support both a centralized
and decentralized log service. Our implementation of Passlog
with an auditable log service running on one server with
eight CPU cores and a client and relying party running on
four cores each executes an authentication in 1025ms.

1. Introduction

Account security is a weak point in many computer
systems. The question is not whether user accounts will be
compromised, but rather which accounts will be compro-
mised when, how fast the breaches will be discovered, and
how much damage will be caused. For example, attackers
stole LastPass data by compromising an engineer’s personal
computer and obtaining credentials [83], an attack that
spanned 2.5 months and resulted in LastPass advising all
customers to change their passwords. Accounts are challeng-
ing to secure in part because they involve humans, who have
many accounts in many different contexts and very limited
capacity to remember and update authentication information,
yet great capacity to cause devastating consequences through
a single mistake.

We argue that user authentication systems must be
designed not just to resist compromise, but also to facil-
itate detection and recovery. Unfortunately, the best widely
deployed alternatives today require us to pick one. The
gold standard in resisting compromise is FIDO2/passkeys—
authenticator devices that can be used with many services,
employ secure hardware, and do not require delegating
any security-critical credential secrets to the cloud. Yet
discovering whether and where a FIDO?2 authenticator has
been misused is nearly impossible. Conversely, single sign-on

systems such as OpenlD (e.g., sign in with Google) provide
comprehensive logging across many services, yet increase the
attack surface by trusting cloud providers and often storing
web cookies far more privileged than the user’s immediate
intent to access one service.

Larch [29] was the first proposal to achieve the best
of both worlds—combining FIDO2 and its benefits with
comprehensive, centralized logging of all accesses made to
any of a user’s accounts across all contexts (personal and
work). While larch had the benefit of working with existing,
unmodified services supporting existing authentication stan-
dards (so-called relying parties), it paid a price for backwards
compatibility. An attacker who controls both the larch log
provider and a relying party can link a user across accounts,
harming privacy. One consequence is that log providers must
maintain secrets, and there is no way to store log records on
a widely replicated and publicly auditable ledger.

This paper answers the question: what’s the best design
point for user authentication if we don’t need unmodified
relying parties. We presents Passlog, a decentralized authen-
tication logging system where one or more parties can run
the logging service, and any number of parties can verify
that the log is being maintained correctly. None of the parties
that run or audit the log service learn sensitive information
or user credentials—Passlog protocol messages and public
state only reveal that a particular operation is taking place at
a particular time. In this way, adding parties to the system
only improves integrity and does not degrade privacy or
account security.

We design, implement, and evaluate Passlog in two
primary modes of deployment: (1) a centralized log service
with many auditors that ensure that the log service is behaving
correctly, and (2) a decentralized log service where multiple
parties play the role of the log service and auditors can
still verify correct behavior. With one eight-core log server
and four-core clients and relying parties, an authentication
takes 1025ms. With two eight-core log servers with 256GB
RAM each, privately fetching a log record from a store
of 10M records takes 126s (this can be performed in the
background).

1.1. Contributions

We now describe the challenges and techniques in
designing and building Passlog.

Challenge: Enforcing correct log structure with privacy.
The log service needs to be able to ensure that clients are
maintaining the structure of their log records correctly, even

if the clients are malicious. In particular, every authentication,
whether made by an honest or malicious, should always be
recorded, and a malicious client should not be able to tamper
with other clients’ log records. At the same time, for privacy,
the log server should not be able to learn any information
about the mapping of log records to clients. These goals are
fundamentally in tension.

Technique: Private verifiable sequences. To resolve this
tension, we introduce a new primitive, private verifiable
sequences. Private verifiable sequences allow different clients
to read values from and write values to different sequences
in a public key-value store. For privacy, the public state
hides which values belong to which clients. To guarantee that
client sequences are maintained correctly, we also ensure that
clients are only able to append to their own sequences. We
describe our construction, which leverages zero-knowledge
proofs and authenticated data structures, in Section 3.

Challenge: Verifying encrypted log contents. We not
only need to make sure that the log structure is maintained
correctly; we also need to ensure that log records correctly
encrypt each authentication. A relying party should only
authenticate a client if it is convinced that the log service
has received a log record that encrypts some authentication-
specific string under the user’s original encryption key. This
property should hold even if the client is malicious and
constructing its authentication request to try to circumvent
logging. At the same time, we need to ensure that the relying
party cannot link a user across different accounts even if it
colludes with the log service.

Technique: Zero-knowledge proofs of well-formed records.
To address this problem, we show how clients can generate
zero-knowledge proofs that convince relying parties that their
log records are well-formed. The log records need to be well-
formed relative to per-user state. To ensure that this per-user
state cannot be used to link a user across accounts, we show
how a client can send relying parties a commitment to this
state at registration time and then prove that subsequent
authentications are valid relative to this commitment.

Challenge: Detecting log service misbehavior. One of
our requirements for Passlog is that it should be publicly
auditable—if the log service misbehaves, there should be
public evidence that could cause users to lose trust in the log
service. We need to ensure that other parties can detect if
(1) the log service participates in an authentication without
storing the corresponding log record, or (2) the log service
tampers with existing authentication records.

Technique: An accountable log design. We address both
types of misbehavior through their own mechanism. To catch
a log service that tries to not record an authentication, we
show how relying parties can store a small amount of data
that allow clients can retrieve to verify that their log records
are being maintained correctly. To detect a log service that
tries to tamper with existing log records, we show how to
leverage techniques from authenticated data structures while
providing strong user privacy.

Challenge: Privately retrieving log records. While our
private verifiable sequences primitive hides the mapping of

log entries to users, read access patterns have the potential
to reveal that two log entries belong to the same user. For
example, if the log provider receives multiple back-to-back
requests for log records, it could infer that a user is fetching
her log contents and link all of the requested log records
to the same user. This information in turn could be used to
link a user across accounts.

Technique: Authenticated private information retrieval
for sparse Merkle trees. To prevent this leakage, we show
how to fetch log records, along with membership and non-
membership proofs, with strong privacy and integrity (the
problem of authenticated private information retrieval [24]).
We need to store authentication records in a sparse Merkle
tree to allow auditors to detect log misbehavior. However,
because the client does not know the layout of the tree,
fetching these membership and non-membership proofs
would naively require d rounds of communication, where
d is the tree depth (256 in our implementation). Instead,
we show how clients can use an incremental distributed
point function [12] to directly encode the Merkle path
they are fetching—this solution only requires one round
of communication.

Limitations. Passlog requires relying parties to update their
software. Section 8 describes how Passlog can be imple-
mented via a new signature type in the FIDO2 specification,
thereby leveraging widespread support of FIDO2 in browsers
and facilitating incremental adoption. Also, while Passlog
protocol messages hide user identities, the log provider could
use other information (e.g., a client’s IP address) to link a
user across accounts. A client could hide its IP address via an
anonymizing proxy like Tor [34] or iCloud private relay [75].

2. Design overview

A Passlog deployment involves the following four types
of parties: users, relying parties, the log service, and auditors.

Users. In our setting, millions of users authenticate to
different web services, or relying parties, regularly. Users rely
on multiple client devices (e.g., a phone and laptop) that store
constant-size secret state. Devices can synchronize secret
state via existing browser profile synchronization mechanisms.
Similarly, devices share information on audits performed on
users’ authentication history, such as last audit time.

Relying parties. Relying parties are online services that
manage client accounts (e.g., Bank of America or Amazon).
Users register with a relying party to create an account and
then later authenticate to the account.

Log service. The log service is responsible for maintaining
encrypted authentication records. The log service both par-
ticipates in authentications and manages the store of records
(the log). At a high level, the client queries the log service
for each authentication, and if the authentication request is
well-formed, the log service records the authentication.
The log services make the log of records public for
anyone to audit. To ensure that users can access their accounts,
the log service should be highly available, and to ensure that

old records on the log are not being deleted, the log service
should provide strong integrity guarantees. Notably though,
the log service learns no private information via protocol
messages, such as which account a user is authenticating to
or which accounts belong to a particular user.

In Section 5, we discuss two settings for instantiating the
log service:

A centralized log service. The client interacts with a single
log provider that manages and periodically publishes the log
state, which consists of encrypted records. Auditors can check
that this log state is maintained correctly (similar to existing
transparency logs [19], [44], [51], [53], [57], [59]). In this
scenario, the log provider would use standard replication
techniques [49], [64] for strong availability guarantees.

A decentralized log service. The client interacts with multiple
nodes that together run a Byzantine fault-tolerant consensus
protocol [17], [50] to agree on the log state. As long as
some fraction of the nodes are honest and online, the system
provides strong availability and integrity guarantees.

Auditors. Auditors are users or organizations that monitor
the log state and check that updates to the log state are
correct and consistent (e.g., the log service is not deleting
old records). If an auditor detects misbehavior, it can report
evidence of this misbehavior. This evidence could cause
users to stop trusting the log provider. Auditors can also
choose to help clients fetch log records.

2.1. Protocol flow

Background. We use authenticated encryption and a com-
mitment scheme. A commitment cm to a value x € {0, 1}"
with opening r € {0, 1}?° is hiding and binding—a compu-
tationally bounded adversary cannot learn x from cm without
the opening r (hiding) or, given r, find another opening such
that cm opens to x # x” (binding). We can commit to x with
opening r by simply computing Commit(x,r) as H(x||r)
where H is a cryptographic hash function.

We describe the high-level flow for Passlog below and
in Figure 1 (see Section 4 for the full protocol). Note that,
unlike single sign-on systems (e.g., “Sign-in with Google”)
or larch [29], Passlog does not require clients to enroll with
the log service—the log service maintains no per-user state.

Step 1: Setup. The client starts by sampling a secret key
and fetching the log service’s public key. (We implement
this “logical” secret key with multiple keys, but describe it
as a single key for simplicity here.)

Step 2: Register with a relying party. When the client
first creates an account with a relying party, it sends the
relying party state for verifying future authentications. This
state includes (1) the log service’s public key and (2) a
commitment to the client’s secret key. The relying party
stores this information to verify subsequent authentications.
As in prior work [29], we only provide strong security and
logging guarantees for a particular relying party if the client
registers honestly.

=)
=
=
Log service User Relying party
1. Setup
Skuser
—T—> PKiog
2. Registration
—T> pklog’ cm

3. Authentication

record «—» <«—F> J

4. Lookup
<——» record

5. Recover

<——— revoke

Figure 1: We outline the five user operations in Passlog. During
setup, the client samples a secret key and fetches a public key
from the log service. To register with a relying party, the client
sends a commitment to its secret key, along with the log’s public
key, to the relying party. At authentication time, the client runs a
protocol with the log service and the relying party where, at the
end of the protocol, the log service obtains an encrypted record,
and the relying party is convinced that the authentication is valid.
The client can then later retrieve authentication records from the
log service. If the client detects any suspicious activity, it can send
a revocation request to the log service.

Step 3: Authenticate to a relying party. In order to
authenticate to a relying party, the client must convince
the relying party that it knows the secrets it committed to
at registration and that the authentication has been correctly
logged. At a high level, authentication proceeds in two steps:

1) The client generates an encrypted log record and uses
our verifiable private sequences primitive to add it to
its sequence of records stored at the log service. If the
log service successfully stores the encrypted log record,
it signs the record, along with a relying-party-chosen
challenge.

2) The client proves to the relying party that the signed log
record is “well-formed” relative to the relying party’s
identity and the secret key that the client committed to
at registration time.

The relying party can optionally store the encrypted log
record to make it possible to detect log service misbehavior.

Step 4: Look up authentication records. The user’s client
can periodically request log records by querying the log
service and an auditor. These lookups can take place in
the background to detect suspicious authentications. For
example, the user’s laptop can periodically query the log and
check for discrepancies between the returned log records and
authentications made on a user’s registered devices. Users
can also manually inspect the log contents.

Step 5: Recover after compromise. If a user learns of one or
more suspicious authentications while reviewing log records,
she can lock down all of her accounts by notifying the log
service. Locking down the accounts prevents an attacker
from accessing more of the user’s accounts. Notably, a user
does not need to remember all of the accounts that she has
registered with Passlog to freeze them all at once. The user
can then use an offline recovery mechanism to gain access
to the frozen accounts (see Section 8). While this is useful
for the accounts that the attacker did not access before the
freeze, the attacker could have changed the credentials for
the accounts accessed before the freeze, essentially locking
the user out. For these accounts, the user would need to
work with the relying party directly to determine the best
course of action to recover from compromise.

2.2. Security and privacy properties

We describe the Passlog security and privacy properties.

Security against a malicious log. A malicious log service
cannot authenticate to a user’s account. In this way, users’
authentication credentials do not leave the client.

Privacy against a malicious log. A malicious log service
does not learn any information about a user’s authentication
history, beyond timing, via protocol messages. In particular,
an attacker that controls the log service cannot learn which
relying parties users are authenticating to, which records
correspond to the same user or relying party, or even if a

user is authenticating with the log service for the first time.
Unlinkability against a colluding log and relying parties.

An attacker that controls the log service and an arbitrary
number of relying parties cannot link a user across accounts
using protocol messages. For example, if Google runs a log
service, it cannot use protocol messages to link one user
across two distinct Google accounts.

Audit integrity against a malicious log. If a log service
is honest and then compromised at time ¢, the client will
be able to correctly retrieve log records corresponding to
authentications before time 7. This property follows from the
availability and integrity of the append-only log state.

Publicly verifiable proofs of log misbehavior. Users and
relying parties can together retroactively prove that the log
service misbehaved at authentication time. More specifically,
they can prove that a log service signed a log record without
correctly logging it. Similarly, auditors can prove that the log
service tampered with the log state. The ability to prove log
misbehavior raises the bar for an attacker that compromises
the log: if the log server is caught misbehaving, users will
likely stop trusting the log service and switch to another.

Non-goals. Passlog provides unlinkability against an attacker
that controls the log service and relying parties only at the
protocol level—a client’s IP address could still link a client
across accounts. A client could use an anonymizing proxy
like Tor [34] or iCloud private relay [75] to prevent the log
service from learning its IP address.

The timing, number, and type of requests could also
reveal private information. A relying party can also learn

the identity of the log service associated with an account.
This information can help an attacker narrow down the set
of users potentially associated with an account, and so it is
helpful for a user to use a log service with many users.

In a deployment with a centralized log service, if the
log service denies service, then users will not be able to
access their accounts. Standard replication techniques [49],
[64] can help protect against unintentional crashes. In a
deployment with a decentralized log service, the availability
guarantees match those of the underlying Byzantine fault-
tolerant consensus protocol (see Section 5.4).

As in prior work [29], Passlog ensures that authentications
are logged if the attacker compromises either a client device
or the log service. If the attacker gains access to the relying
party credentials, then we do not guarantee that every
authentication is correctly logged.

As discussed in Section 2.1, an attacker that compromises
the client may authenticate to a relying party and change
the credentials. In this case, the authentication will be
logged correctly, but subsequent authentications with the
new credentials will not be recorded.

3. Verifiable private sequences

To build Passlog, we construct a new primitive: verifiable
private sequences (VPS). At a high level, our VPS scheme
allows a client to write values in a sequence to a public
object store and then fetch the values in the sequence from
this state. For simplicity, we will describe this primitive in
the setting where clients submit requests and a single server
manages this public state, although we can also use this
primitive in the setting where the role of the server is split
across multiple parties. The challenging part in constructing
verifiable private sequences is that we need to support reads
and writes from many clients, but the public state should
hide the mapping of values to sequences.

In our VPS scheme, each sequence is associated with a
secret key, and each value is located at an address. This
address is pseudorandom and deterministic: the client’s
sequence secret key is necessary to compute sequence
addresses. The client can then issue read and write requests to
different addresses derived from the secret key. VPS ensures
that write requests are “well-formed”—element i — 1 in the
sequence is inserted before element ¢, and a client must know
the sequence secret key in order to write to that sequence.

3.1. Syntax

A VPS scheme is a tuple of efficient algorithms, param-
eterized by security parameter A and value space V.
Initialize the state.

« VPS.Init(11) — st: The server initializes the state.

Commit to the state.
e VPS.GetCm(st) — cmg: Given the current state, the
server outputs a commitment to the state cmg;. The client
can use this commitment for subsequent operations.

Create a sequence.

« VPS.KeyGen(11) — k: The client samples a sequence
secret key k.

Get an address.

o VPS.GetAddr(k,i) — addr: Given a sequence secret
key k and index i € N, the client outputs the correspond-
ing address addr.

Read from a sequence.

e VPS.Read(st,addr) — (v,mn): Given a client-
provided address addr and current state st, the server
returns the associated value v € V and a proof of
inclusion mj,.. If addr is not present in st, the server
returns L and a proof mj,. that addr is not present.

o VPS.VerifyRead(cmg, addr, v, minc) — {0,1}: The
client uses the inclusion proof mj,c to verify that
(addr, v) is present in the state committed to by cmg;. If
v = 1, then the client can use 7, to verify that (addr, v)
is not present in the corresponding state. The client
outputs “1” if verification succeeds and “0” otherwise.

Append to a sequence.

« VPS.ProveAppend(cmg, k, i, addr, tinc) — mappd: The
client generates a proof that addr can be correctly
inserted in the sequence with key k at location i.
Generating this proof requires a proof of inclusion mjnc
of the address for location i — 1 with key k relative to
the state commitment cmg;. If i = O (this is the first
insertion), then mj,c = L.

o VPS.Append(stoig, addr, v, Tappd) — Stnew: The server
checks if the proof m,,pq certifies that the address-value
pair (addr,v) can be correctly appended to the current
state stoq. If the check passes, the server adds (addr, v)
to the state to generate stp.,. Otherwise, it returns the
unmodified stqq.

3.2. Properties

We informally introduce the security and privacy proper-
ties of verifiable private sequences here. We formalize the
definitions for our construction in Appendix 1.

Completeness. Completeness requires that reads reflect
writes. More precisely, consider any sequence of well-formed
append and read operations. (Here, well-formed simply means
that element i — 1 is inserted in the sequence before element
i.) For any such sequence, if the client writes a value v to a
sequence at location i, then subsequently reading from that
sequence at location i returns v.

Privacy. Privacy ensures that append requests (and the
resulting public state) hide the mapping of append requests
to sequences.

Append soundness. Append soundness guarantees that the
server can check that client append requests are “well-
formed”. Client appends must:

» Append to sequences where the client knows the corre-
sponding secret key.

« Append to sequences in order (i.e., for i > 0, the client
must append element i — 1 before element 7).

Read soundness. Read soundness requires that for a given
commitment to the state cmg and address addr, an at-
tacker cannot produce two values v, v’ with inclusion proofs
Tine, .. Where v # v’ that both verify.

Limitation: Series of reads leak access patterns. Each
value is associated with a random-looking but deterministic
address addr, and so the server learns when two requests
are for the same address (the access pattern). This leakage
could help a malicious server use append and read requests
to infer which addresses map to the same sequence. We
discuss how to hide read addresses using private information
retrieval [21] in Section 5.2.

3.3. Building blocks

Our construction uses a pseudorandom function where,
for security parameter A, PRF : {0, 1}*xN — {0, 1}*. It also
uses zero-knowledge proofs and authenticated data structures.

Zero-knowledge proofs of knowledge. Zero-knowledge
arguments of knowledge [38] allow a prover to prove that
it knows some witness w such that for some circuit C
and instance x, C(x,w) = 1 without revealing w to the
verifier. We consider non-interactive zero-knowledge proofs
of knowledge in the random-oracle model [9], [11], [31].
For simplicity, throughout the paper we will refer to these
as “zero-knowledge proofs.” A zero-knowledge proof system
ZKPoK for circuit C, public input x, and witness w is defined
as:

o ZKPoK.Prove(C, x,w) — m: Output a proof .

o ZKPoK.Verify(C,x,m) — {0, 1}: Output 1 if & verifies

with respect to x, and 0 otherwise.

We rely on the correctness, soundness, zero-knowledge, and
proof of zero-knowledge properties of ZKPoK in our VPS
construction. Our implementation uses a PLONK-style proof
system [36], and so requires a trusted setup (the parameters
generated from the setup are implicit arguments to the prove
and verify algorithms). In a real deployment, these parameters
could be generated via a multi-party computation [58].

Authenticated data structures. Authenticated data struc-
tures [5], [66], [77], [78], [79], [80] make it possible to prove
that a key-value store is being maintained according to some
invariants. More specifically, a server holding a key-value
store can generate and publish a concise commitment to its
state. Authenticated data structures support short proofs—
for our VPS scheme, we need support for inclusion and
exclusion [44], [51], [53], [59]. Clients can check these
proofs relative to the commitment. An authenticated data
structure ADS is defined by the following tuple of algorithms
with respect to value space V.
« ADS.Init() — st: Output an empty key-value store.
o ADS.Commit(st) — cmg: Output a state commitment.
« ADS.Append(stog, addr,v) — stpe,. Given old state
stod, address addr € {0, 1}*, and value v € D, output a
new state Stpew = Stoig U {(addr, v)}.

o ADS.Read(st,addr) — (v, minc): If (addr,v) € st,
output v and a proof of inclusion rj,.. Otherwise, output
1 for v and a proof of non-inclusion.

o ADS.Verify(cmg, addr, v, minc) — {0,1}: Output 1 if
Tinc certifies that (addr,v) is an entry in the state
represented by cmg, and O otherwise (the argument
v is optional).

We rely on the correctness and soundness properties of
ADS in constructing VPS. In Section 5, we describe our
log design that supports the properties we need for Passlog,
which include inclusion and exclusion soundness.

3.4. Construction

At a high level, the public state consists of an au-
thenticated data structure storing address-value pairs. The
address for location i of the sequence with secret key k is
addr; « PRF(k,i). This way, the addresses look random
without the secret key and do not reveal anything about the
relationship to other sequences. To ensure that clients are
only appending to the end of sequences where they know
the corresponding secret key, the client generates a zero-
knowledge proof that its append request is well-formed. To
insert item i at address PRF(k,i), the client proves that
it knows an inclusion proof for address PRF(k,i — 1). We
present our construction in Figure 2.

4. The Passlog protocol

We now describe the core Passlog protocol. We show
how to use verifiable private sequences to build a verifi-
able authentication logging protocol. We also introduce a
mechanism for detecting log misbehavior (Section 4.1).

4.1. Verifiable authentication logging

We would like to use verifiable private sequences in order
to store log records. Using this tool, the log service can play
the role of the server described in Section 3 to verify that
clients are maintaining sequences correctly without learning
the mapping of appends to sequences.

However, we also need to ensure that clients can only
authenticate if they are logging well-formed authentication
records. The log service cannot perform this check because
it should not know where the client is authenticating. Our
approach is to allow the relying party to verify this without
revealing any information that could allow the relying party
to link a client across accounts.

Set up client state. The client starts by sampling a verifiable
private sequence key ks.q, which it will use to identify its
sequence of log records. The client also samples another
key kenc, which is a symmetric authenticated encryption key
for encrypting log records. The client then fetches the log
service’s public key pkiqq-

Registration with a relying party. To register with a relying
party, the client samples two commitment openings, 7seqs 'enc

Our VPS construction. We instantiate our VPS construc-
tion with a security parameter A, zero-knowledge proof
system ZKPoK, authenticated data structure ADS, and
pseudorandom function PRF.

Let C be the circuit that takes as input a public instance
(addr;, cmg) and private witness (k, i, 7j,c) and outputs
1 if the below conditions are true and O otherwise:

e addr; = PRF(k, i)
o« If i > 0:
— addr;_1 = PRF(k,i - 1)
— ADS.Verify(cmg, addr;_1, -, mtine) = 1

VPS.Init(k) — st
o Output st « ADS.Init().

VPS.KeyGen() — &

« Output k & {0, 1},
VPS.GetCm(st) — cmg;

o Output cmg; < ADS.Commit(st).

VPS.GetAddr(k,i) — addr
o Output addr « PRF(k,i).

VPS.Read(st, addr) — (v, minc)
o Output (v, mjnc) < ADS.Read(st, addr).

VPS.VerifyRead(cmgt, addr, v, minc)
e Output {0, 1} « ADS.Verify(cmg, addr, v, minc).-

VPS.ProveAppend(cmgt, k, i, addr, Tinc) — Tappd
« Output m,ppq «— ZKPoK.Prove(C, cmg, w) for w =
(k,i,minc) and x = (addr, cmgy).
VPS.Append(stoig, addr, v, mappd) — Stnew
o Compute cmg «— ADS.Commit(steg).
o Run b « ZKPoK.Verify(C, (addr, cms;), Tappd).-
o If b =1, output ADS.Append(steiy, addr, v).
« Otherwise, output steq.

Figure 2: Our verifiable private sequences construction.

and uses them to commit t0 Kgeq, Kenc TESpECtively to generate
CMseq, CMenc. The client then sends these commitments to
the relying party, along with the log’s public key pk,o,, and
SAVES 'seq, F'enc- The client will prove that future authentication
records are correct relative to these commitments. To ensure
that the client state does not grow with the number of relying
parties, the client can compress rseq, 7enc Using a PRG seed.

Authentication to a relying party. At a high level, authen-
tication proceeds in four steps:
1) The relying party sends the client an authentication
challenge (a random string).
2) The client generates an encrypted authentication record.

3) The client appends the authentication record to a verifi-
able private sequence with the log service.

4) The client convinces the relying party that the authen-

tication record is logged and well-formed relative to
CMgeq and CMepc.

We now describe authentication in more detail. After receiv-
ing the challenge string chal, the client generates a record
string m using a format chosen by the relying party. The
string m could include just the relying party’s name, but could
also include any sensitive actions made by the user (e.g.,
changing a password). The client generates the encrypted
log record as ct « Enc(kenc, m) where Enc is a symmetric
authenticated encryption scheme.

The client then appends ct to its verifiable private
sequence keyed by keq at location i. When it sends the
append request to the log service, the client includes the
challenge string chal. If the log service successfully appends
ct at address addr, it signs (addr, ct, chal) and sends the
signature o back to the client.

The client then needs to generate a proof that
addr, ct are correctly linked to the cMgeq, CMene cOmmit-
ments that the client sent at registration. To do this,
the client generates a zero-knowledge proof n with pub-
lic instance (addr, ct, cMgeq, CMenc, 1) and private witness
(kseqs kenc, T'seqs Tenc, 1) certifying that:

o ct = Enc(kenc, m)

o addr = PRF (kseq, 7)

o CMgeq = Commit(kseq, 7seq)
o CMenc = Commit(kenc, Fenc)

This proof allows the relying party to check that the log
record encrypts the correct data using the client’s original
encryption key, and that the log record is included in the
sequence that the client committed to at registration. This
ensures that an adversary cannot corrupt or hide the log
contents by logging the wrong information, using the wrong
key, or appending the record to a different sequence.

The client sends &, o, addr, ct to the relying party. The
relying party verifies m and checks that o verifies under the
pkjog that the client sent at registration time. If those checks
pass, then the relying party authenticates the client.

Looking up records with the log service. To retrieve the
contents of its log, the client needs to fetch the values in its
verifiable private sequence from the log state and decrypt
them using kenc. In Section 5.2, we show how to use private
information retrieval to look up a value while hiding the
corresponding address. If the client does not hide the address,
an attacker could potentially use request timing and ordering
to infer that multiple addresses belong to the same sequence.

Proving log misbehavior. In the design described above, a
malicious log service can lie to the relying party about
adding an authentication record to the public log state.
More precisely, it can sign (addr, ct, chal) without adding
(addr, ct) to the log state, which could allow a malicious log
server to authenticate to a user’s account without creating a
log record. We would like to ensure that if this ever happens,
a user and relying party can together catch this misbehavior
(although they cannot prevent this behavior in real time).
The ability to catch misbehavior raises the stakes of omitting

records—if a log service is caught misbehaving in a publicly
verifiable way, this could damage the log service’s reputation.

To perform this checking, relying parties store the signa-
tures under the log’s public key that are sent by the client
to authenticate. If a user ever suspects misbehavior, it can
request the authentication signatures for its account from the
relying party. If the log service ever signed a (addr, ct) pair
without including it in the public log state, the client can use
the signature to prove misbehavior. To minimize the storage
overhead, relying parties can retain these signatures for some
time period (e.g., 48 hours) and then delete them. The client
can request the signatures at any point during this interval.

Recovering after compromise. When a user detects suspi-
cious login activity, she can lock down all of her accounts
by revoking her Passlog logging sequence. More precisely,
a client can request to log a record with ct set as a special
codeword REVOKE as in a regular authentication. In future
authentications, the log service can check in zero-knowledge
if an append request is trying to append to a REVOKE record
and, if so, refuse to complete the authentication.

5. Instantiating the Passlog log service

We explain how we implement our public ledger of
records and present two ways a Passlog log service could
be instantiated.

5.1. Log data structure

We now describe how the log service stores log records
in a publicly verifiable way. We use this authenticated data
structure to implement verifiable private sequences.

We leverage a sparse Merkle tree [52], [59], which we
call Lg, to efficiently store millions of (addr, ct) pairs while
supporting efficient membership and non-membership proofs.
Using a sparse Merkle tree, the ciphertexts are stored at the
leaf nodes specified by their addresses.

The log server inserts a batch of (addr, ct) pairs every
epoch (on the order of seconds [19], [53], [57], [59]). At every
epoch, the log server commits to the updated contents of Lg
and posts the resulting commitment to a separate append-
only ledger Lc. We implement L¢ as a binary Merkle tree. In
this construction, a proof of inclusion of (addr, ct) inserted
in epoch i is simply (1) a proof of inclusion of addr in the
Lr tree from epoch i committed to by cm;, and (2) a proof
of inclusion of cm; in Lc.

Updating client proofs of inclusion. To authenticate at a
later epoch j (j > i), the client must present a proof of
inclusion of (addr,ct) from its previous authentication in
epoch i. (Note that we require two authentications by the
same client to be spaced at least an epoch apart in order to
allow the client to supply a proof of inclusion.) Requiring
a proof of inclusion from a past authentication leads to a
privacy challenge: the client must present a proof of inclusion
that validates in epoch j, but the client should not reveal
that its prior authentication took place in epoch i. To address
this problem, we have the client maintain a locally updated

inclusion proof corresponding to its last authentication. After
the client authenticates in epoch i, it requests a proof of
inclusion of cm; in L¢. For each subsequent epoch, the client
will fetch the new append to L¢ (we call this background
fetching process subscription), which enables the client to
generate an updated proof of inclusion of cm; for the current
Lc. This way, the client can provide an updated proof of
inclusion in epoch j without revealing that the client’s last
authentication was in epoch 7.

Garbage collection. To prevent the log’s storage require-
ments from growing indefinitely, we can allow the log
service to initialize a new, empty ledger at regular intervals
(e.g., monthly) while retaining the previous ledger for a
longer archival period (e.g., one year). During authentication,
the client proves that its previous record is included in
either the current ledger or an archived one. The root of
the corresponding ledger becomes a public input in the
log service’s zero-knowledge proof, which the log service
crosschecks with its archive. Using this approach, the log
service learns the month of the client’s last authentication.
To hide this information, the public input in the log’s zero-
knowledge proof could include all available roots, and the
client’s private witness could specify which of the roots
contains the last authentication.

5.2. Private lookups in the log

In Passlog, a client needs to be able to request values
from its verifiable private sequence in order to recover the
contents of its authentication log. A client also needs to
be able to check if a new entry has been appended to its
verifiable private sequence in order to potentially detect
compromise. A key challenge in supporting these lookups is
privacy—while verifiable private sequences ensure that the
public state and contents of appends provide strong privacy,
a series of reads can reveal private information. For example,
if a client makes two back-to-back requests for different
addresses, the log server could infer that these addresses
belong to the same sequence.

Private information retrieval (PIR) [21] is a useful tool
for preventing this leakage. A PIR protocol allows a client
to fetch an item from a server without revealing the identity
of the item to the server. However, when looking up entries
in a verifiable private sequence, the client needs not only
privacy, but also integrity—the client needs to check that its
result is consistent with log server’s commitment. Using only
standard PIR, the log service could tamper with the data in
order to try to learn which element the client is retrieving (a
selective-failure attack [48]).In order to provide both privacy
and integrity, we need an authenticated PIR scheme.

Following the approach of Colombo et al. [24], we use
a two-server linear PIR scheme with Merkle proofs in order
to protect against server tampering. Using Merkle proofs
makes it possible not only to defend against selective-abort
attacks from the server, but also to allow the client to check
the validity of its response relative to a publicly available
commitment. In our setting, the two servers could be the log

service and an auditor (in a deployment with a centralized
log service), or two parties maintaining the log service (in
a deployment with a decentralized log service). The client
can check this commitment with other auditors if it wishes.

However, while Colombo et al. propose using Merkle
trees for authenticated PIR, their techniques do not extend
directly to fetching membership or non-membership proofs
in sparse Merkle trees. One challenge of this setting is that
the client does not know which nodes of the sparse Merkle
tree have been populated and so does not know which nodes
along the Merkle path have been inserted and which are
“empty” nodes. Solving this problem would seem to require
a number of PIR queries equal to the tree depth to allow the
client to learn which nodes are present.

Instead, we show how to take advantage of an existing
tool for privately encoding a path in a tree in order to privately
fetch a proof of membership or non-membership in a single
round. Specifically, we leverage incremental distributed point
functions (DPFs). While DPFs are commonly used for private
information retrieval [14], [37], this is, to our knowledge,
the first use of incremental DPFs for private tree lookups.

Tool: Incremental Distributed Point Function (DPF). An
incremental DPF [12] secret-shares the values of nodes in
a depth n binary tree such that the tree contains a single
non-zero path. The client can generate DPF keys of size
roughly O(A-n) that encode the location of this path. A key
allows a server to construct secret shares of the node values
in this tree, but without learning the location of the path.

Incremental DPFs for sparse Merkle tree lookups. To
construct a query for addr, the client starts by generating
incremental DPF keys that correspond to the path in a tree
of length d (here d is the bit length of our addresses, which
is 256 in our implementation). The client sends a key to
each of the two servers. The servers then need to use their
keys in order to fetch the membership or non-membership
proof corresponding to the path. The servers need to return
the siblings that are present along the path encoded in their
incremental DPF keys. (Note that in the membership proof,
addr is present, and in the non-membership proof, the path
to addr simply terminates in an empty node.) The servers
cannot evaluate their keys on all possible nodes in the depth
d tree, as d = 256 in our implementation and this would
be prohibitively expensive. Instead, the servers can simply
evaluate their keys for all non-empty nodes and all nodes
with non-empty siblings (Figure 3). The servers then multiply
the DPF evaluation for a given node with the value for that
node’s sibling. At the leaf nodes, the servers can multiply
the DPF evaluation by the ciphertext in order to fetch the
corresponding ciphertext. The servers sum the results across
each level and return secret shares for each level, along with
the signed log roots. The client can check that the log roots
match and then reconstruct the secret share to recover the
proof of membership (or non-membership) and the ciphertext
(if present). In this way, the client can privately fetch the
membership or non-membership proof in a single round.

Vooc Voot

(o ()
o) Yor G vii
1%} %)
ViodV1io1

Figure 3: Performing lookups on a sparse Merkle tree via incre-
mental DPFs. In a sparse Merkle tree of depth 3, suppose two
nodes voo and vjg; are inserted. This modifies vg, vgg, vi, and vig
and leaves all other nodes as default hashes (0). To fetch the proof
of inclusion for vgg, the server first evaluates its DPF key for all
non-empty nodes (vo, Voo, V000, V1, V10, V1o1) and all nodes with non-
empty siblings that have not been evaluated yet (vo1, vooi, Vi1, V100)-
Then the server multiplies each evaluation with the node’s sibling’s
value (using a default hash if the sibling does not exist).

5.3. Centralized log deployment

We now describe how to deploy Passlog with a central
log server and multiple auditors. In this model, the log server
maintains the data structure described in Section 5.1 such
that the auditors can verify that it is updated correctly.

At a high level, the auditors must check that the posted
commitment is consistent with updates to Lr. At every epoch,
the log service appends the new root of Lgr to L¢ and then
sends its auditors the following: the signed new root of Lc,
the new root of Lg and its proof of inclusion in L¢, and all
new appends made to Lg in the last epoch with proofs of
inclusion in Lg. The auditors then need to check that L¢ in
epoch i is simply the product of applying the posted appends
to the state of L¢ in epoch i — 1. Notably, the log server
should not be able to erase any log records without detection.
To check this, the auditors can simply replay the work and
check that the resulting roots match—if they do not, then the
auditor has publicly verifiable evidence of misbehavior. We
ensure that any misbehavior is detected if at least one honest
auditor checks L¢ every epoch. Auditors can also store copies
of the log state so that if the log service refuses to serve
read queries, clients can still access their log records.

5.4. Decentralized log deployment

To avoid trusting a single log server to preserve log
entries, multiple log servers run by different organizations
can replicate the log using Byzantine-fault tolerant (BFT)
consensus. The servers can use threshold signatures to prove
the validity of cmg. However, traditional BFT consensus
protocols have the disadvantage of closed membership.

A more appealing distributed architecture would be to
maintain the log as a public blockchain with open mem-
bership. Though we don’t want to rely on cryptocurrency
mining and staking for security, Passlog is well suited to
the federated Byzantine agreement model demonstrated by
Stellar [55]: if each organization running replicas chooses
other organizations it wants to agree with, transitively any two

replicas most people care about will end up in agreement.
Since all replicas sign the ledger root hash, users can at
registration tell the relying party which sets of log server
signature keys they consider sufficient to validate cmg;.

6. Implementation

We implemented Passlog in both the centralized and
decentralized log models in roughly 2,300 lines of Rust and
110 lines of Noir. We wrote our zero-knowledge proofs in
Noir [2] on the scalar field of BN254 [68]. We proved them
using the Barretenberg [1] proof system with an UltraHonk
prover. The log service and relying party each requires a one-
time setup that generates a verification key for their respective
zero-knowledge proof circuit. Our private lookups use an
existing incremental DPF implementation [26]. We will make
our implementation open source at time of publication.

We evaluated addresses of records using a Poseidon
sponge construction [40] with the user’s sequence key and the
index of each address in the user’s verifiable private sequence
as two inputs. We use a PRG seed to compress the client’s
commitment openings, as well as authenticated encryption
nonces. Commitments are the Poseidon sponge function
evaluated on the user’s sequence key and its commitment
opening. For authenticated encryption, we instantiated the
DuplexSponge framework [10] with the Poseidon hash
function. In all instances of Poseidon, we used a rate of 4, a
capacity of 1, and the x> S-box which give approximately 128
bits of security against both collision and preimage attacks.

Log signatures are Boneh-Lynn-Shacham signatures [13]
on the BLS12-381 curve. In our decentralized implementation
with two log servers, we used the scheme’s multi-signatures
and public key aggregation method. We instantiated the
ledger Lr of records as a sparse Merkle tree of depth 256
that can index all possible 32-byte Poseidon hash outputs.
We instantiated the ledger Lc of commitments as a binary
Merkle tree of depth 10—this number is not required by our
system but has to be fixed to compile zero-knowledge proofs.
Unless otherwise specified, epochs are 3 seconds long.

Unless otherwise specified, we assume Passlog has 10M
users that each logs 20 authentications daily. Every hour,
each user performs lookups on all her records that have
been logged in the past period. We instantiate the garbage
collection method (Section 5) by having the log service
initialize a new ledger every month and archive the old
ledger for one year.

7. Evaluation

We evaluate Passlog’s performance during authentication
in both the centralized and decentralized (two-server) modes.
We also evaluate its performance during lookup in the two-
server setting. For lookup latency experiment with 10M
leaves in the log tree, we run the two log servers on a
Google Compute Engine n2d-standard-16 instance with AMD
Milan CPU, 8 cores, and 256GB of memory. In all other
experiments, we run the log server on an n2d-custom-16-
32768 instance with AMD Milan CPU, 8 cores, and 32GB

126319

120000{ —e— Latency (ms)
100000
80000

60000

Latency (ms)

40000

20000 10409

1154

58 167

0

10K 100K M
Number of inserted records in log tree

1K 10M
Figure 4: Lookup latency increases nearly linearly as the number
of leaves in the log tree increases. The x-axis is shown in log scale.
For a four core client sending split lookup requests to two serves,
each lookup takes 58ms when there are 1K records in the ledger
and 126s with 10M records.

of memory. For calculating networking and storage costs,
we assume all log machines are located in the us-centrall
region. We run the client, relying party, and auditor on e2-
custom-8-16384 instances with a default CPU, 4 cores, and
16GB of memory, comparable to a commodity laptop. For
latency experiments, we configure the communication links
between all parties to have a 20ms RTT and a bandwidth of
100Mbps.

7.1. End-user cost

Latency. Registration takes 22ms for a client on four cores.
Thereafter, with one log server, the client can complete each
authentication in 2415ms on one core, or 1025ms on four
cores (Figure 5). The heaviest computation performed by
the client is generating zero-knowledge proofs, which takes
870ms on four cores. It takes the log server 42ms to verify
the proof, and the relying party 38ms. The log-side proof
requires most constraints for proving that a previous record
exists in the ledger, and the relying party proof requires most
constraints for proving authenticated encryption (Table 6).
Although our implementation uses the Barretenberg proof
system, Passlog can be instantiated with any zero-knowledge
proof system, depending on deployment requirements. As
zero-knowledge proofs become more performant, so too
will Passlog (e.g., faster proof generation would decrease
authentication latency). Authenticating with two log servers
in the decentralized model marginally increases latency; it
takes 2395ms on one core and 1087ms on four cores.
Each lookup takes 167ms when there are 10K records
in the log tree and 126s with 10M records (Figure 4). To
reduce per-client overhead, we require that clients perform
lookups over all their new appends at regular intervals. We
envision these regular lookups will happen in the background
through some client-side application. Clients may also request
individual lookups manually, provided the records fall in the
current lookup window. 8.33M is the number of records that
the log server has to scan for each lookup if we assume 10M
users, 20 authentications daily per user, and lookups over all
new appends every hour. To minimize computation during

10

B Prove (Client) B Other Verify (RP server) B Verify (Log server)

Centralized Decentralized

0N
199
(=3
(=]

1500

1000

(%
(=3
(=]

Authentication latency (ms)

o

Client cores

Client cores

Figure 5: Client latency for each authentication decreases as the
number of client cores increases in both the centralized log (left)
and decentralized log (right) models. For a four-core client, each
authentication takes 1,025ms in the single-server setting (840ms of
which is spent on zero-knowledge proof generation) and 1,087ms
in the two-server setting. ‘Other’ is predominantly networking time
(e.g., transmitting a 14KB proof over a 100Mbps bandwidth takes
20ms, in addition to the default 20ms RTT).

Proof predicate Num. gates
Check first authentication 11
Check REVOKE 18
addr; = PRF (kseq, ©) 95
o2 Lddri_; = PRF (keequi — 1) %
Check addr;_; included in Lg 21,600
Check of cmg; included in L¢ 4,349
Full circuit 26,389
CMseq = H(kseq’rseq) 95
CMenc = PRF(Kenc, Tenc) 94
RP addr; = PRF(keeq, i) 95
Authenticate ct encryption 172
Full circuit 406

TABLE 6: Breakdown of logical gates in the log and relying party
zero-knowledge proofs for the i-th authentication. The number of
constraints for individual predicates adds up to more than the size
of the full circuit, because Noir applies optimizations like shared
gate elimination when the circuit is compiled as a whole. The
commitment tree L¢ is instantiated with 10 levels here, but it is not
fixed by our implementation (e.g., depth 256 would require 68,576
total gates in the log proof).

lookup, the log service converts all non-empty nodes in the
tree that fall in the lookup window to types that distributed
point functions can evaluate more efficiently. The lookup
process can be further parallelized across cores and machines
with existing techniques [21], [42].

Communication. Client’'s communication cost during regis-
tration is 256 bytes (Table 7). Thereafter, for every authentica-
tion, the client sends a total of 28.9KB to the log server and
relying party, 28.4KB of which are zero-knowledge proofs.
During each lookup, the client sends two 11.4KB big DPF
keys, one each to its log server and audit server.

Comparison to existing solutions. The state-of-the-art
authentication logging solution, larch, takes 150ms to authen-
ticate to relying parties using FIDO2, 91ms for TOTP [62],
and 74ms for password-based log-ins when the client runs

Item Comm. (B)

PKiog 192 (C—R)
Registration CMgeq 32

CMenc 32

Proof 14.1KB (C—L)

Record 64

chal 16

Signature 96 (L—C)
Authentication chal 16 (R—C)

ct plaintext 32

Proof 14.3KB (C—R)

Record 64

Signature 96

Root of Lg 32

New appends to Lg ~ 32/append

New append indices 32/append

Incl. proofs in Lg 32d/append
Audit Root of L¢ 32

New append to Lc 32

New append index 1

Incl. proof in L¢ 32d’

Signature 96

DPF key 11.4KB (C—L)

Path secret shares 12d (L—C)
Lookup Root secret share 12

cm secret share 12

Signature 96

New append to Lc 32 (L-0)

New append index 4
Subscription Root of L¢ 32

Inl. proof in L¢ 32d’

Signature 96

TABLE 7: Breakdown of communication cost during each Passlog
operation. ‘C’ is client, ‘L’ is log, ‘R’ is RP, and ‘—’ is the direction
of communication (e.g., C—L means client sending to log). d is the
log tree depth and d’ is the commitment tree depth. For instance,
during each audit, when d = 256, d’ = 10, and 100 new appends
were made in the last epoch, the log server sends 826KB to each
auditor. Our implementation fixes the size of a ct plaintext to 32B
as the witness size needs to be constant for zero-knowledge proofs.

on four cores and the log server on eight cores. While
Passlog and larch both provide universal authentication
logging, Passlog achieves stronger privacy guarantees against
a colluding log server and relying party.

Some existing SSO solutions provide logging but with
weaker privacy guarantees. For instance, each authentication
with OpenlD takes 165ms [67], but the service shares users’
complete authentication history with third parties.

We also compare Passlog’s latency with that of existing
authentication solutions without logging history. Password-
based authentication systems often use password hashing
to store user passwords securely at the server. The Ar-
gon2 [72] password hashing function takes 0.5s on two cores.
Berypt [70] has adaptable performance and is typically 2-3
times faster than Argon2 at comparable security levels.

11

7.2. Cost to deploy a Passlog service

We evaluate the cost to deploy a Passlog service in the
centralized log model.

Storage. In the BLS signature scheme, a (compressed) public
key is 48 bytes, a (uncompressed) secret key is 32 bytes,
and a (compressed) signature is 96 bytes. Public keys and
signatures are compressed for communication and storage,
and are uncompressed for signing and signature verification.
The log server stores its own compressed key pair, the client
stores a public key for each log server that participates in
authentication, and the relying party stores one public key
for each distinct log server its users use (Table 8). In the
ledger of records implemented as a sparse Merkle tree, for
n inserted records and N bits in each hash value, the tree
stores at most n(N —log, n +2) — 1 non-empty hashes [65].
For a depth d tree, we additionally store d default hashes.
For instance, when each hash is 32 bytes (i.e., N = 256),
10M users log 20 authentications each every day, and the log
archives the ledger once every month, the size of one ledger
at the end of the month is 1.34TB. Furthermore, we could
store each archived ledger for one year; for ledgers that are
older than one month, we store only the leaf appends. Clients
who have not authenticated in more than one month would
experience a higher latency, as the log service has to compute
intermediary nodes in the tree during authentication time.
In this scenario, the total storage requirement for all live
and archived ledgers is 4.57TB. We could optimize storage
by not storing intermediary nodes in the current tree, but
this comes at the cost of increased authentication latency
for clients, as the log service would have to compute the
unsaved hashes during each authentication.

Each relying party stores all authentication records, 64B
each, that clients send to it, along with a log server’s signature.
Suppose a relying party has 10M users that each authenticate
20 times every day. Say that relying party keeps records
around for 9 days to give clients sufficient time to retrieve
them. Then the relying party stores a maximum 288GB of
records and log signatures at any given time.

Throughput. Authentication throughput of the relying party
is 36.1 auths/core/s. Authentication throughput of the log
server is 20.0 auths/core/s when epochs are 3 seconds and
20.7 auths/core/s when epochs are 120 seconds (Figure 9).
This illustrates a tradeoff: shorter epochs reduce the size of
audit requests, as there are fewer new events appended to
the ledger during each epoch, but increase their frequency.
In contrast, longer epochs reduce the total number of audit
requests but increase their size. This tradeoff results in a
non-linear relation between the log throughput and epoch
size, as the overhead of sending many smaller requests does
not diminish proportionally as epoch size grows. Lookup
throughput of the log server is 4.91 lookups/core/s with 1K
records in the tree, 1.10 with 10K, 0.21 with 100K, and 0.11
with 1M. To achieve higher throughput, multiple lookup
requests can be batched so the database is scanned once for
all of them. Auditor throughput is 211.1 audits/core/s.

Item Storage (B)
Kseq 32
Kenc 32
PRG seed 16

Client addr;_; 32
Root of Lg 32
Incl. proof in L¢ 32d’
Lc new appends 32/append
(addr, ct) < 64/auth/user
Signature < 96/auth/user
CMge 32/user

RP cmen(l 32/user
PKiog < 48/user
ZK verifying key 1825
Current Lg < 32n(258 —log, n) — 1
Archive Lg < 32n(258 —log, n) — 1

+352n

Log Default hashes 32d
cmg 3224+ 1)
pklog 48
Sk|og 32
ZK verifying key 1825

TABLE 8: Storage requirements at each party in Passlog. d is
the log tree depth, d’ is the commitment tree depth, and n is the
number of records in Lg. There are 11 archive Lg after garbage
collection. After each authentication, clients erase appends to L¢
in previous epochs that they have received through subscription. If
there are multiple users using the same log service, relying parties
only store distinct pkjog. They also periodically erase old (addr, ct)
and log signatures after clients have reviewed them.

) [)
o o
o n

g
n

Log throughput (auths/core/s)

=
o

40 60

Epoch length

80 100 120

Figure 9: Log achieves minimum authentication throughput when
epochs are 5 seconds and maximum when epochs are 120 seconds.
Clients have to wait for at least one epoch between authentications.

Cost. Running a single core on an n2d-custom-16-32768
machine with a 10GB disk and 32GB of memory takes
$0.22 hourly, and on an e2-custom-8-16384 machine with
16GB of memory takes $0.09 hourly. [22]. Running a
single core on an n2d-standard-16 instance (used for lookup
latency experiments with 10M records) costs $1.75 hourly.
Transferring data to a Google Cloud Platform machine is
free, and transferring data out to the Internet costs $0.045-
$0.085/GiB in the Standard Tier pricing model, depending
on how much total data is transferred [39]. A log server
only meets the minimum data transfer size for billing at over
190.1M authentications (a $17 data transfer fee).

12

—— Relying party cost —— Auditor cost

Log cost

Cost ($)
o

0 0.00,
oM M 4M 6M oM

Number of authentications

M 10M M 4M 6M

Number of audits

M 10M

Figure 10: Computation costs to deploy log and relying party
servers to support the first 10M authentications (left), and to deploy
an auditor to perform the first 10M audits (right). After the log
state grows past 10M appends, storing the ledger including all
intermediary nodes costs $0.014 monthly (Section 7.2).

Processing 10M authentications with 3-second epochs
takes 138.7 log core hours and 76.95 relying party core
hours. It costs $8.15 for a Passlog log server to support 10M
authentications, and $4.23 for a relying party (Figure 10).
In one year, if a user requests 7,300 authentications (20
everyday), it takes a log server $0.0061 to support the user,
and a relying party $0.0031. Performing 10M audits takes
13.16 auditor core hours and costs $1.18. Supporting 10M
lookups on the most recent 1M records takes 50,794 total
log core hours and costs $44,444 per lookup server.

The log state is dominated by the current and archived
log trees and the commitment tree. Storing 10M appends and
intermediary nodes in the current log tree and the most recent
archive tree costs $0.74 monthly in Google Cloud Storage’s
Nearline Storage [23]. Each archived ledger is stored for 12
months; storing 10M leaf nodes from each of the total 11
ledgers in Coldline Storage costs $0.014 monthly. Storing
one commitment ledger as a fully populated binary tree of
depth 32 in Archive Storage costs $0.175 monthly. We do
not account for the cost of reading from old memory, such
as looking up a record in an archived ledger, or writing to
storage, such as archiving a ledger.

8. Discussion

Handling device loss. If a user loses all her devices, she
needs a way to recover her authentication secrets. Users can
keep the secrets encrypted under a separate key and back up
this key using an existing secret recovery scheme [18], [25],
[27], [47], [54], [56], [81], [84]. We also describe a backup
authentication mechanism, offline FIDO, below.

Account recovery with offline FIDO. Common practice for
allowing users to recover accounts with lost 2FA credentials
is asking them to store per-account one-time recovery codes.
Unfortunately, with many accounts, managing such recovery
codes can be burdensome, which encourages users to store
them in an encrypted file, which is no longer a second factor.

As a better alternative, we implemented a virtual offline
FIFO2 authenticator called ofido. ofido only needs to be set
up once by each user for an arbitrary number of recoverable
accounts. During setup, ofido generates a secret 18-word seed

phrase and a a master-public-key file containing an ES256
public signature key. ofido can be run with only this public
key, and it uses BIP-32 hierarchical key derivation to generate
new public keys for each account registration. Of course,
ofido can’t authenticate the user unless it is run in recovery
mode and given the 18-word seedphrase, which users should
store on paper and only enter in case of emergency.

ofido is technically not FIDO2 compliant because
browsers request non-user-present signatures during creden-
tial registration. However, the purpose of this signature is just
to check whether or not a particular credential corresponds
to a particular authenticator. No one checks if the non-user-
present signature is valid, so ofido returns a syntactically
valid signature that won’t verify. This approach works with
every relying party we’ve tried.

Adoption via FIDO2. Deploying a Passlog service requires
modifying relying parties. To ease the path to adoption, we
can design the relying party’s proof verification process
to be compatible with FIDO2 [6], which many relying
parties already support. For instance, the proof could be
packaged as a new signature type that adheres to the Client
to Authenticator Protocol [15], which governs communication
between browsers and FIDO2 authenticators. A new client
credential format can also be introduced to align with the
W3C WebAuthn [43] specification.

9. Related work

Privacy-preserving authentication logging. Single sign-
on systems allow users to authenticate to all their accounts
from multiple devices using a single identity. Services like
BrowserID [3] ensure that the identity provider does not learn
the identity of relying parties. Furthermore, services like EL
PASSO [86], IRMA [7], PseudoID [32], and the IBM identity
mixer [45] ensure that the identity provider does not learn
the identity of users as well as relying parties. These services,
however, do not offer logging, and some of them do not
prevent colluding relying parties from linking users across
accounts. Perez et al. also proposed a system for client-side
encrypted access logging [69]; they introduce mechanisms for
trustworthy device attribution, but provide weaker integrity
guarantees for malicious parties than Passlog.

Larch is the state-of-the-art in privacy-preserving server-
side authentication logging. Like Passlog, it logs a user’s
authentication history without learning anything about the
relying party based on protocol messages. Larch does not
prevent a colluding log server and relying party from
linking a user across accounts. This arises partly from
larch’s objective of achieving compatibility with existing
authentication frameworks like TOTP [62] and FIDO2. In
Passlog, we sacrifice backward compatibility and provide
additional security against colluding log and relying parties.

Transparency logs. Like Passlog, transparency logs detect
attacks on a system by logging sensitive actions [8], [51], [52],
[53], [57], [59], [63], [71]. Key transparency logs provide
privacy by hiding client identities and, in some schemes, se-
quences of updates [19], [53], [57], [59]. Similarly, Passlog’s

13

public state is encrypted and a user can only identify and
decrypt records that are generated with her key.

Blockchain-based authentication. Prior work has explored
using blockchain for authentication (summarized in these
surveys [4], [61]). Like Passlog, these systems involve a large
network of parties in authentications. Unlike Passlog, the
focus of much of this work is on verifying user identities,
rather than creating encrypted authentication records.

Proving properties of pseudorandom values. Our verifiable
private sequences provide proofs that pseudorandom values
satisfy certain constraints without revealing anything about
the pseudorandom values or the sequence they belong to.
Verifiable random functions [60] provide proofs that a
pseudorandom output was correctly computed from a given
input and key (but do not hide the inputs). Publicly verifiable
secret sharing [20], [73] allows a dealer to distribute secret
shares to participants along with proofs that certify the
shares have been correctly distributed. Verifiable identity
families [28] also produce unique, per-identity public keys
from a master secret key, along with publicly verifiable proofs
that each key really corresponds to the given identity.

Proving properties of encrypted data. Verifiable encryp-
tion [16], [74] proves properties of a ciphertext to a third-
party verifier via public-key cryptography. Recent develop-
ments in verifiable encryption include a generic compiler
that can turn a large class of zero-knowledge proofs based
on MPC-in-the-head [46] into secure verifiable encryption
protocols [76]. Zero-knowledge middleboxes also rely on
clients to prove properties of encrypted data: in this setting,
clients prove that their encrypted network packets satisfy
middlebox policies [41], [85].

Authenticated private information retrieval. Early works
on authenticated private information retrieval [82], [87] in
the single-server setting only guaranteed that a query is
consistent with some database, not necessarily the intended
one. A proposal by Colombo et al. [24] overcomes this
limitation in the single- and two-server settings. The former
requires that the server honestly commits to the database.
Dietz et al. [33] show how to defend against a server that
provides a malformed database commitment. Furthermore,
Falk et al. [35] present a generic compiler that transforms any
private information retrieval scheme to a maliciously secure
one. Separately, VeriSimplePIR [30] is a verifiable version of
the semi-honest SimplePIR protocol [42]. Distributed point
functions [14], [37] can also provide integrity guarantees for
private information retrieval.

10. Conclusion

Passlog records a user’s complete authentication history
in a public ledger while providing strong privacy and security.
A Passlog log service ensures that every authentication is
correctly logged, but the authentication requests do not reveal
the identity of the user or relying party. This design makes
it possible to run the log service using one or more parties
and allow many parties to audit the log.

References

(1]
[2]
(3]
(4]

(51

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

Barretenberg. https://github.com/AztecProtocol/barretenberg.
Noir documentation. https://noir-lang.org/docs.
Persona. https://github.com/mozilla/persona.

Sohail Abbas, Manar Abu Talib, Afaf Ahmed, Faheem Khan, Shabir
Ahmad, and Do-Hyeun Kim. Blockchain-based authentication in
internet of vehicles: A survey. Sensors, 21(23):7927, 2021.

Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value
commitments for blockchains and beyond. In Advances in Cryptology—
ASIACRYPT 2020: 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South
Korea, December 7—11, 2020, Proceedings, Part 111 26, pages 839-869.
Springer, 2020.

The FIDO Alliance. User authentication specifications overview, Jun
2024. https://fidoalliance.org/specifications/.

Gergely Alpar, Fabian Van Den Broek, Brinda Hampiholi, Bart Jacobs,
Wouter Lueks, and Sietse Ringers. Irma: practical, decentralized and
privacy-friendly identity management using smartphones. In /0th
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs
2017), pages 1-2, 2017.

Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro,
John Kolb, Hyung-Sin Kim, David E Culler, and Raluca Ada Popa.
WAVE: A decentralized authorization framework with transitive
delegation. In 28th USENIX Security Symposium (USENIX Security
19), pages 1375-1392, 2019.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st
ACM Conference on Computer and Communications Security, pages
62-73, 1993.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche.
Duplexing the sponge: single-pass authenticated encryption and
other applications. In International Workshop on Selected Areas
in Cryptography, pages 320-337. Springer, 2011.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pages 329-349. 2019.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Lightweight techniques for private heavy hitters. In 2021
IEEE Symposium on Security and Privacy (SP), pages 762-776, 2021.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. In Colin Boyd, editor, Advances in Cryptology —
ASIACRYPT 2001, pages 514-532, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’16, page 1292-1303, New York, NY, USA, 2016. Association for
Computing Machinery.

John Bradley, Jeft Hodges, Michael B. Jones, Akshay Kumar, rolf Lin-
demann, and Johan Verrept. Client to authenticator protocol (CTAP),
Feb 2025. https:/fidoalliance.org/specs/fido-v2.2-ps-20250228/fido-
client-to-authenticator-protocol-v2.2-ps-20250228.pdf.

Jan Camenisch and Ivan Damgard. Verifiable encryption, group encryp-
tion, and their applications to separable group signatures and signature
sharing schemes. In Proceedings of the 6th International Conference
on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT ’00, pages 331-345, Berlin,
Heidelberg, 2000. Springer-Verlag.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI ’99, pages 173-186, USA, 1999. USENIX
Association.

14

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Melissa Chase, Hannah Davis, Esha Ghosh, and Kim Laine. Acsesor:
A new framework for auditable custodial secret storage and recovery.
Cryptology ePrint Archive, Paper 2022/1729, 2022.

Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen
Malvai. Seemless: Secure end-to-end encrypted messaging with less
trust. In Proceedings of the 2019 ACM SIGSAC conference on computer
and communications security, pages 1639-1656, 2019.

Benny Choc, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch.
Verifiable secret sharing and achieving simultaneity in the presence
of faults. In Annual Symposium on Foundations of Computer Science
(Proceedings), pages 383-395, 1985.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
Private information retrieval. J. ACM, 45(6):965-981, November 1998.

Google cloud. https://cloud.google.com/compute/vm-instance-pricing.
Google Cloud. Cloud storage pricing.

Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David J. Wu,
and Bryan Ford. Authenticated private information retrieval. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3835-3851,
Anaheim, CA, August 2023. USENIX Association.

Graeme Connell, Vivian Fang, Rolfe Schmidt, Emma Dauterman, and
Raluca Ada Popa. Secret key recovery in a Global-Scale End-to-End
encryption system. In /8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24), pages 703-719, 2024.

Henry Corrigan-Gibbs. Code that accompanies the paper “lightweight
techniques for private heavy hitters” at IEEE S&P 2021, 2023. https:
//github.com/henrycg/heavyhitters.

Emma Dauterman, Henry Corrigan-Gibbs, and David Mazieres. Safe-
tyPin: Encrypted backups with Human-Memorable secrets. In /4th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 1121-1138. USENIX Association, November 2020.

Emma Dauterman, Henry Corrigan-Gibbs, David Maziéres, Dan
Boneh, and Dominic Rizzo. True2F: Backdoor-resistant authentication
tokens. In 2019 IEEE Symposium on Security and Privacy (SP), pages
398-416. IEEE, 2019.

Emma Dauterman, Danny Lin, Henry Corrigan-Gibbs, and David
Maziéres. Accountable authentication with privacy protection: The
larch system for universal login. In /7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23), pages
81-98, Boston, MA, July 2023. USENIX Association.

Leo de Castro and Keewoo Lee. VeriSimplePIR: Verifiability in
SimplePIR at no online cost for honest servers. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 5931-5948, 2024.

Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-
interactive zero-knowledge proof systems. In Carl Pomerance, editor,
Advances in Cryptology — CRYPTO 87, pages 52—72, Berlin, Hei-
delberg, 1988. Springer Berlin Heidelberg.

Arkajit Dey and Stephen Weis. PseudolD: Enhancing privacy in
federated login. In Hot Topics in Privacy Enhancing Technologies,
pages 95-107, 2010.

Marian Dietz and Stefano Tessaro. Fully malicious authenticated PIR.
Cryptology ePrint Archive, Paper 2023/1804, 2023.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the
second-generation onion router. In Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, SSYM’04, page 21,
USA, 2004. USENIX Association.

Brett Falk, Pratyush Mishra, and Matan Shtepel. Malicious security
for PIR (almost) for free. Cryptology ePrint Archive, Paper 2024/964,
2024.

Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge. Cryptology ePrint Archive, 2019.

https://github.com/AztecProtocol/barretenberg
https://noir-lang.org/docs
https://github.com/mozilla/persona
https://fidoalliance.org/specifications/
https://fidoalliance.org/specs/fido-v2.2-ps-20250228/fido-client-to-authenticator-protocol-v2.2-ps-20250228.pdf
https://fidoalliance.org/specs/fido-v2.2-ps-20250228/fido-client-to-authenticator-protocol-v2.2-ps-20250228.pdf
https://cloud.google.com/compute/vm-instance-pricing
https://github.com/henrycg/heavyhitters
https://github.com/henrycg/heavyhitters

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

Niv Gilboa and Yuval Ishai. Distributed point functions and their
applications. In Advances in Cryptology—-EUROCRYPT 2014: 33rd
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings 33, pages 640-658. Springer, 2014.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186-208, 1989.

Google. All network pricing. https://cloud.google.com/vpc/network-
pricing?hl=en.

Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. Poseidon: A new hash function for
zero-knowledge proof systems. Cryptology ePrint Archive, Paper
2019/458, 2019.

Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael
Walfish. Zero-Knowledge middleboxes. In 31st USENIX Security
Symposium (USENIX Security 22), pages 4255-4272, 2022.

Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah
Meiklejohn, and Vinod Vaikuntanathan. One server for the price of
two: Simple and fast Single-Server private information retrieval. In
32nd USENIX Security Symposium (USENIX Security 23), pages 3889—
3905, Anaheim, CA, August 2023. USENIX Association.

Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay Kumar, and Emil
Lundberg. Web authentication: an API for accessing public key
credentials, Apr 2021. https://www.w3.org/TR/webauthn-2/.

Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang,
and Raluca Ada Popa. Merkle?: A low-latency transparency log system.
Cryptology ePrint Archive, Paper 2021/453, 2021.

Eine Partnerschaft in Nanotechnologie von IBM Research und
ETH Ziirich. IBM Identity mixer (Authentication without identi-
fication). https://www.zurich.ibm.com/pdf/csc/Identity_Mixer_Nov_
2015.pdf.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing, pages
21-30, 2007.

Ivan Kirstic. Behind the scenes with iOS security, 2016. https://www.
blackhat.com/docs/us- 16/materials/us- 16-Krstic.pdf.

E. Kushilevitz and R. Ostrovsky. Replication is not needed: single
database, computationally-private information retrieval. In Proceedings
38th Annual Symposium on Foundations of Computer Science, pages
364-373, 1997.

Leslie Lamport. The part-time parliament. In Concurrency: the works
of Leslie Lamport, pages 277-317. 2019.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382-401,
July 1982.

Adam Langley, Emilia Kasper, and Ben Laurie. Certificate trans-
parency, 2013. https://datatracker.ietf.org/doc/html/rfc6962.

Ben Laurie and Emilia Kasper. Revocation transparency. Google
Research, September, 33, 2012.

Julia Len, Melissa Chase, Esha Ghosh, Kim Laine, and Radames Cruz
Moreno. OPTIKS: An optimized key transparency system. In 33rd
USENIX Security Symposium (USENIX Security 24), pages 4355-4372,
2024.

Ryan Little, Lucy Qin, and Mayank Varia. Secure account recovery
for a privacy-preserving web service. In Proceedings of the 33rd
USENIX Conference on Security Symposium, SEC *24, USA, 2024.
USENIX Association.

Marta Lokhava, Giuliano Losa, David Mazieres, Graydon Hoare,
Nicolas Barry, Eli Gafni, Rafat Malinowsky, and Jed McCaleb. Fast

and secure global payments with Stellar. In 27th ACM Symposium on
Operating Systems Principles, Huntsville, Ontario, October 2019.

15

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Joshua Lund. Technology preview for secure value recovery, 2019.
https://signal.org/blog/secure-value-recovery/.

Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha
Ghosh, Ercan Oztiirk, Kevin Lewi, and Sean Lawlor. Parakeet: Practical
key transparency for end-to-end encrypted messaging. In Network and
Distributed System Security (NDSS) Symposium 2023, 2023.

Anthony Mpho Matlala. Setup Ceremonies. 2021. https://zkproof.
org/2021/06/30/setup-ceremonies/.

Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W
Felten, and Michael J Freedman. CONIKS: Bringing key transparency
to end users. In 24th USENIX Security Symposium (USENIX Security
15), pages 383-398, 2015.

Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random
functions. In Proceedings of the 40th Annual Symposium on the
Foundations of Computer Science, pages 120—130, New York, NY,
October 1999. IEEE.

Ali H Mohsin, AA Zaidan, BB Zaidan, Osamah Shihab Albahri,
Ahmed Shihab Albahri, MA Alsalem, and KI Mohammed. Blockchain
authentication of network applications: Taxonomy, classification, ca-
pabilities, open challenges, motivations, recommendations and future
directions. Computer Standards & Interfaces, 64:41-60, 2019.

David M’Raihi, Johan Rydell, Mingliang Pei, and Salah Machani.
TOTP: Time-Based One-Time Password Algorithm. RFC 6238, May
2011.

Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas
Gailly, Linus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford.
CHAINIAC: Proactive Software-Update transparency via collectively
signed skipchains and verified builds. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1271-1287, Vancouver, BC,
August 2017. USENIX Association.

Diego Ongaro and John Ousterhout. raft. In Proceedings of the
2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’ 14, page 305-320, USA, 2014. USENIX Association.

Rasmus Ostersjo. Sparse Merkle Trees: Definitions and space-
time trade-offs with applications for Balloon. PhD thesis, Karlstad
University, 2016.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopou-
los. Authenticated hash tables based on cryptographic accumulators.
Algorithmica, 74:664-712, 2016.

OpenID Foundation Helping people assert their identity wherever they
choose. Openid.

Geovandro C. C. F. Pereira, Marcos A. Simplicio Jr, Michael Naehrig,
and Paulo S. L. M. Barreto. A family of implementation-friendly BN
elliptic curves. Cryptology ePrint Archive, Paper 2010/429, 2010.

Carolina Ortega Pérez, Alaa Daffalla, Thomas Ristenpart, and Cornell
Tech. Encrypted access logging for online accounts: Device attributions
without device tracking. In USENIX Security Symposium, 2025.

Niels Provos and David Maziéres. A future-adaptable password scheme.
In Proceedings of the FREENIX Track: 1999 USENIX Annual Technical
Conference, 1999.

Mark D Ryan. Enhanced certificate transparency and end-to-end
encrypted mail. Cryptology ePrint Archive, 2013.

Hynek Schlawack. What is argon2? https://argon2-cffi.readthedocs.io/
en/stable/argon2.html.

Markus Stadler. Publicly verifiable secret sharing. In Ueli Maurer,
editor, Advances in Cryptology — EUROCRYPT 96, pages 190-199,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

Markus Stadler. Publicly verifiable secret sharing. In Ueli Maurer,
editor, Advances in Cryptology — EUROCRYPT ’96, pages 190-199,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

Apple Support. About icloud private relay. https://support.apple.com/
en-euro/102602, Aug 2023.

https://cloud.google.com/vpc/network-pricing?hl=en
https://cloud.google.com/vpc/network-pricing?hl=en
https://www.w3.org/TR/webauthn-2/
https://www.zurich.ibm.com/pdf/csc/Identity_Mixer_Nov_2015.pdf
https://www.zurich.ibm.com/pdf/csc/Identity_Mixer_Nov_2015.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://datatracker.ietf.org/doc/html/rfc6962
https://signal.org/blog/secure-value-recovery/
https://zkproof.org/2021/06/30/setup-ceremonies/
https://zkproof.org/2021/06/30/setup-ceremonies/
https://argon2-cffi.readthedocs.io/en/stable/argon2.html
https://argon2-cffi.readthedocs.io/en/stable/argon2.html
https://support.apple.com/en-euro/102602
https://support.apple.com/en-euro/102602

[76] Akira Takahashi and Greg Zaverucha. Verifiable encryption from
mpc-in-the-head. JACR Communications in Cryptology, 04 2024.

[77] Roberto Tamassia. Authenticated data structures. In Algorithms-
ESA 2003: 11th Annual European Symposium, Budapest, Hungary,
September 16-19, 2003. Proceedings 11, pages 2-5. Springer, 2003.

[78] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad
Feist, and Dmitry Khovratovich. Aggregatable subvector commitments
for stateless cryptocurrencies. In International Conference on Security
and Cryptography for Networks, pages 45-64. Springer, 2020.

[79] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Char-
alampos Papamanthou, Nikos Triandopoulos, and Srinivas Devadas.
Transparency logs via append-only authenticated dictionaries. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1299-1316, 2019.

[80] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and Stefano
Tessaro. Versa: Verifiable registries with efficient client audits from rsa
authenticated dictionaries. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 2793—
2807, 2022.

[81] Shabsi Walfish. Google Cloud Key Vault Service. Google, 2018. https:
//developer.android.com/about/versions/pie/security/ckv-whitepaper.

[82] Xingfeng Wang and Liang Zhao. Verifiable single-server private
information retrieval. In Information and Communications Security:
20th International Conference, ICICS 2018, Lille, France, October
29-31, 2018, Proceedings, pages 478-493. Springer, 2018.

[83] Jess Weatherbed. Lastpass reveals attackers stole password vault
data by hacking an employee’s home computer. The Verge, Febru-
ary 2023. https://www.theverge.com/2023/2/28/23618353/lastpass-
security-breach-disclosure-password- vault-encryption-update.

[84] WhatsApp. Security of end-to-end encrypted backups, 2021.
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_
Backups_Whitepaper.pdf.

[85] Collin Zhang, Zachary DeStefano, Arasu Arun, Joseph Bonneau,
Paul Grubbs, and Michael Walfish. Zombie: Middleboxes that Don’t
snoop. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 1917-1936, Santa Clara, CA,
April 2024. USENIX Association.

[86] Zhiyi Zhang, Michal Krél, Alberto Sonnino, Lixia Zhang, and Etienne
Riviere. EL PASSO: Privacy-preserving, asynchronous single sign-on,
February 2020.

[87] Liang Zhao, Xingfeng Wang, and Xinyi Huang. Verifiable single-
server private information retrieval from LWE with binary errors.
Information Sciences, 546:897-923, 2021.

Appendix

1. Verifiable private sequence properties

We provide formal definitions for the properties we
informally defined in (Section 3.2) for verifiable private
sequences. Throughout, an efficient algorithm is one that
runs in probabilistic polynomial time.

Completeness. Completeness informally states that address-
value pairs that have been correctly appended should be
returned in read requests. To formalize completeness, we
define a completeness experiment parameterized by security
parameter A (Figure 11).

Definition 1. (Completeness) A VPS scheme parameterized
by security parameter A4 and value space V is complete if,
for all efficient adversaries A, the output of the game in
Experiment 1 is O with negligible probability.

16

Experiment 1: VHS completeness. We define a complete-
ness game parameterized by an adversary A, verifiable
private sequences scheme VPS, security parameter A, and
value space V. The game proceeds as follows:

« The challenger runs st « VPS.Init(14), initializes
vals =0, and sets b =1, ctr = 0.

o The adversary can issue KeyGen, Append, and Read
queries to the challenger:
— On KeyGen(), the challenger:
% ke — VPS.KeyGen(14)
* ﬂf:ctr) — 1, lengy « 0, ctr « ctr+1
— On Append(u, v) for user u € N and value v € V,
the challenger:
* Check if u < ctr. If not, then return.
cmg «— VPS.GetCm(st).
addr « VPS.GetAddr(k,, len,)

Tappd < VPS.ProveAppend(cmg, &y, len,,,
addr, ﬂ.(”))

Inc
st « VPS.Append(st, addr, v, mappd)
Store vals = vals U {(u, len,, v)}
(L, ™) VPS.Read(st, addr)

* len, « len, + 1

*

*

*

*

*

*

— On Read(u,i) for user u € N and index i € N,
the challenger:

*

Check if u < ctr and i < len,. If not, then
return.

addr « VPS.GetAddr(k,,, i)
(v, Tine) < VPS.Read(st, addr)
cmg «— VPS.GetCm(st)

If VPS.VerifyRead(cmg, addr, v, minc) = O,
set b =0.

« If (u,i,v) ¢ vals, set b =0.

» When the adversary has finished making queries, the
challenger outputs b.

*

*

*

*

Figure 11: VHS completeness experiment.

Privacy. Append requests are distributed independently of
the content of the appends.

Definition 2. (Privacy) Let the adversary’s view for a
sequence of append operations uq, . .
for i € [n] be defined as follows:

.,u, where u; € N

o st « VPS.Init(1%)

o keys = {}
o Fori € [n]:

— If u; ¢ keys:
x ky, — VPS.KeyGen(14)

* leny, <0

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://www.theverge.com/2023/2/28/23618353/lastpass-security-breach-disclosure-password-vault-encryption-update
https://www.theverge.com/2023/2/28/23618353/lastpass-security-breach-disclosure-password-vault-encryption-update
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf

cmg; < VPS.GetCm(st)

addr « VPS.GetAddr(k,,, len,,)

Tappd < VPS.ProveAppend(cmg, &y, len,,,
addr, ﬂ.(”i>)

inc

_ ﬂ.(“")) «— VPS.Read(st, addr)

inc

Output (addr, mappd)

Then a VPS scheme parameterized by security parameter
A and value space V provides privacy if, for any two
sequences of append operations of length n and for all
efficient adversaries A, the adversary’s views generated by
the two sequences are computationally indistinguishable in
A

Append soundness. Elements must be added to a sequence
in order and keyed by the correct k. We capture a more
precise definition in the experiment in Figure 12. At a high
level, the adversary can issue requests to start and append to
sequences where the keys are held by honest clients, send
read requests, and submit arbitrary append requests. Then the
adversary can submit an append request, and the adversary
wins if the append either writes to a challenger-controlled
client’s sequence, or the adversary writes out-of-order in an
adversary-controlled sequence.

Definition 3. (Append Soundness) A VPS scheme parame-
terized by security parameter A and value space) has append
soundness if, for all efficient adversaries A, the probability
that the output of Experiment 2 is the bit b = 0 is negligible
in A.

Read soundness. The definition of read soundness follows
the definition of read soundness from authenticated data
structures.

Definition 4. (Read soundness) A VPS scheme parameter-
ized by security parameter A and value space) has read
soundness if, for all efficient adversaries A, A can generate
values addr € {0,1}L,v € V, v/ € V, Tinc, ni ., and cmg
such that both of the following statements hold:

VPS.VerifyRead(cmg, addr, v, minc) = 1
VPS.VerifyRead(cmg, addr, v/, 7,) = 1

17

Experiment 2: VHS append soundness. This game
is parameterized by an adversary A, verifiable private
sequences scheme VPS, security parameter A, and value
space V. It proceeds as follows.

« The challenger runs st < VPS.Init(1?) and sets ctr =
0, addrs = 0.

o The adversary can make the following queries:
— On KeyGen(), the challenger:

% ke < VPS.KeyGen(14)
(ctr)

* om0 e L, lengy «— 0, ctr «— ctr+ 1

— On Append(u,v), for u € N and value v € V,
the challenger:
x Check if u < ctr. If not, then return.
% cmg «— VPS.GetCm(st)
% addr « VPS.GetAddr(k,, len,, addr, ”i(nuc))
* Mappd < VPS.ProveAppend(cmg, ky, len,,
addr, 71'.(”))

% St «— VmPcS.Append(st, addr, v, Tappd)
+ (L") « VPS.Read(st, addr)

% len, « len, +1

% addrs « addrs U {addr}
(u

)) to A.

* Returns (addr, mappd, T .
— On Read(addr), the challenger:
* addrs « addrs U {addr}
x Returns VPS.Read(st, addr) to A.
— On Append(addr, v, mappa) for addr € {0, 1}%,
v € V, and proof m,pp4, the challenger:
% addrs <« addrs U {addr}
* st « VPS.Append(st, addr, v, T,ppd)
o Now, A must send the challenger (addr®, v*, mappd*).
o The challenger runs:
— st « VPS.Append(st, addr™, v*, ”prd)
— (v, tine) < VPS.Read(st, addr*)
— cmg <« VPS.GetCm(st)
— b « VPS.VerifyRead(cmg, addr*, v, minc)
o A wins if:
-b=1,
—v=v*(v#£1)
addr® ¢ addrs
Either:
x* A sends (u,i)
VPS.GetAddr(k,, i)
* A sends (k,i) such that for
- addr;_; « VPS.GetAddr(k,i — 1)
- (v,_) = VPS.Read(st, addr;_;)
v = L and addr® = VPS.GetAddr(k, i)

where addr* =

Figure 12: VHS append soundness experiment.

	1 Introduction
	1.1 Contributions

	2 Design overview
	2.1 Protocol flow
	2.2 Security and privacy properties

	3 Verifiable private sequences
	3.1 Syntax
	3.2 Properties
	3.3 Building blocks
	3.4 Construction

	4 The Passlog protocol
	4.1 Verifiable authentication logging

	5 Instantiating the Passlog log service
	5.1 Log data structure
	5.2 Private lookups in the log
	5.3 Centralized log deployment
	5.4 Decentralized log deployment

	6 Implementation
	7 Evaluation
	7.1 End-user cost
	7.2 Cost to deploy a Passlog service

	8 Discussion
	9 Related work
	10 Conclusion
	References
	Appendix
	A Verifiable private sequence properties

