Spartic: A Sparse Polynomial Commitment Scheme
from Lattices

Ihyun Nam and Dan Boneh

Stanford University
November 29, 2024

Abstract

Sparse polynomial commitment schemes allow a prover to commit to a polynomial
that evaluates to zero at most locations in its domain and later prove its evaluations.
These schemes are a research interest for their ability to handle large, sparse structures
efficiently unlike dense polynomial commitment schemes, and have enjoyed several
constructions based on polynomials in finite fields. However, we are yet to see a lattice-
based construction that works on polynomials defined over rings. In this paper we
present Spartic, the first sparse polynomial commitment scheme from standard lattice
assumptions with an optimal prover cost that is linear in the sparsity of the polynomial.
Much like in the sparse polynomial commitment scheme used in the Lasso lookup
arguments (Eurocrypt 2024), at the heart of our scheme is reducing a sparse polynomial
to its unique dense representation and having the prover commit to it using any dense
polynomial commitment scheme for lattices. Then in the evaluation phase, the prover
proves evaluations of the sparse polynomial with respect to its dense representation
using the offline memory checking technique of Spartan (CRYPTO 2020). The difficulty
here is achieving negligible soundness error in the presence of complicating factors, like
zero divisors, in rings that make tools like the linear sum-check protocol used in prior
constructions not directly applicable. We adapt the core techniques of Spark to the
ring domain.

1 Introduction

A polynomial commitment scheme [KZG10] is a cryptographic primitive that allows a prover

to commit to a degree-bound polynomial f € RS4[X,--- |, X] over aring R and p variables
and later convince a verifier of its evaluations in the form of f(x) = y for some public values
x € R* and y € R. A sparse polynomial f' € RS[Xy,---, X,] with sparsity m € N evalu-

ates to a non-zero value at at most m points in its domain. In other words, f’ has at most
m non-zero coefficients in the so-called multilinear Lagrange polynomial basis. A sparse
polynomial commitment scheme commits to such polynomials efficiently by leveraging the
polynomials’ sparsity. Therefore, sparse polynomial commitment schemes have natural ap-
plications in constructing look-up arguments [STW24], succinct non-interactive arguments
of knowledge [BDFG20, BSU24, GNS24|, or multi-party computation [BHV 23, ABGK22].

Among several ways to build a polynomial commitment scheme, lattice- and hash-
based approaches can achieve plausible quantum resistance, in preparation of the post-
quantum world. Between those, lattice cryptography is deemed especially attractive as
standard lattice assumptions are stronger than hash-based assumptions (i.e., security of
hash functions). In the past few years, lattice-based polynomial commitment schemes have
witnessed a progress in achieving concrete efficiency [NS24, HSS24, CMNW24, FMN23] from
standard lattice assumptions. For instance, [NS24| introduced the Greyhound commitment
scheme that achieved the first concretely efficient sublinear verifier time and small proof sizes,
by using the LaBRADOR, [BS22] proof system as a black box. This was an improvement
from previous constructions [ACL 22, BCFL23, WW23] that could render succinctness of
commitments and proofs and efficient verifier time only if the evaluation point was known
before evaluation time.

Sparse polynomial commitment schemes are a related yet independent research inter-
est, often pursued as part of a larger primitive that needs to optimally commit to sparse
structures. For instance, Spark is used in the Spartan zkSNARK [Set19] to prove evalu-
ations of sparse multilinear extensions over a finite field. Spark achieves optimal prover
costs that depends only on the sparsity of the polynomial. While Spark assumes an honest
prover at commitment time, [STW24] proves that Spark remains secure even without the
assumption. This way, Spark in Lasso represents the first ‘standard’ commitment scheme for
sparse multilinear polynomials. It is then generalized and used to build the Lasso lookup
arguments.

However, at the intersection of these two research interests, there has been no known
sparse polynomial commitment schemes built from lattices. Therefore we ask the following
question: Can we build sparse polynomial commitment schemes from lattices, and do so
efficiently? In this paper, we answer this in the affirmative by presenting Spartic, the first
sparse polynomial commitment scheme from lattices with optimal prover costs that are linear
in the sparsity of the committed polynomial. In the commit phase, we propose that we can
make a black-box use of any dense lattice-based multilinear polynomial commitment scheme.
Spartic may also use a lattice-based univariate polynomial commitment scheme, but with an
additional overhead incurred by the general transformation [CBBZ23, ZXZS19, BCHO22]
from a polynomial commitment scheme supporting univariate polynomials to one supporting
multilinear polynomials. In the evaluation phase, we adapt several techniques from [Set19]
and [STW24] to the ring domain. Spartic assumes an untrusted prover and has perfect
completeness and knowledge soundness.

1.1 Technical Overview

Suppose an untrusted prover wishes to commit to an m-sparse multilinear polynomial g € R,
defined over log N = 2logm variables. In our sparse polynomial commitment scheme, the
prover does so by committing to the unique dense representation of g, which are a few
(log m)-variate multilinear polynomials. These polynomials can also be naturally trans-
formed into a list of all of the monomials of g with a non-zero coefficient (and the corre-
sponding coefficient). When the verifier requests an evaluation g(r) of g at some r € R*,
the prover runs a time-optimal algorithm from [Set19] to output g(r). Then, the evaluation
proof of our sparse polynomial commitment scheme amounts to proving a correct execution
of the time-optimal algorithm using the committed dense polynomials. To do so, the prover
uses an offline memory checking methods of [BEGT91] using an untrusted memory, that
effectively forces the prover to commit to the execution trace of the algorithm. The verifier
then checks that the time-optimal algorithm was correctly ran to output g(r). The verifier
has an oracle access to the memory reads returned from the untrusted memory and runs
appropriate verification to check the returned memory values are correct. For any ¢ € N, if
¢ memories of size N'/¢ are used for memory checking, the cost of the prover is dominated
by committing to (3¢ 4+ 1) many dense multilinear polynomials over logm many variables
and ¢ many dense multilinear polynomials over log(N'/¢) many variables.

2 Preliminaries

Notation. Let A denote the security parameter. For n € N, let [n] be the set {1,2,--- ,n}.
Let R be the ring Z/(X¢+1) and R, be the ring Z,/(X? + 1) for some power of two d and
integer g. We use R=4[X1,---, X,] to mean the set of y-variate polynomials in R defined
over the variables X7, - -+, X, where the degree of each variable is at most d. Let B, denote
the p-dimensional boolean hypercube. If an element s is drawn randomly from a set S,

we write either s & S or s €g S, depending on the context. We write vectors with bold
letters and individual elements of a vector using subscripts. For instance, the ith element
of a vector x is denoted x;.

2.1 Sum-checks and Multilinear Extensions over Rings

Definition 2.1 (Sampling Sets and Strong Sampling Sets [CCKP19]). For an arbitrary ring
R, a subset C of R is a sampling set if the difference of any two distinct elements in C is not
a zero divisor. C is further a strong sampling set if the difference is also invertible.

Observe that in R, with a strong sampling set, we are also guaranteed to have a (non-
strong) sampling set, the most trivial example of which is simply the strong sampling set
itself. [BC24] shows that the ring R, has a strong sampling set Csirong Of exponential size.
The following lemma follows naturally.

Lemma 2.2. Let Cstrong be a strong sampling set in R, with an exponential size and let C
be some sampling set such that Cstrong C C. Then, C also has an exponential size in R,.

Definition 2.3 (Multilinear Extensions over Rings). Let R be an arbitrary ring with zero
0 and identity 1. Given a function f : {0,1}! — R, we define the multilinear extension f of

f as
fx) = > fx)-é(r,x)

re{0,1}!
where, for x = (21, ,2;) and r = (rq,--- ,77),

l

eq(r,x) = H [(1 —ri)(1—x;) + rle]

=1

The set {eg(r,x) : r € {0,1}'} are the Lagrange basis polynomials for I-variate multilinear
polynomials.

Sparse polynomials. Given the definition of multilinear extensions over rings, we can
define a sparse polynomial. The following two definitions are from [STW24].

Definition 2.4 (Dense Representation of a Polynomial). For a multilinear polynomial g € R
in [variables, DenseRepr(g) is a list of tuples L such that for all i € {0, 1}!, (to-ring(i), g(i)) €
L if and only if (i) # 0, where to-ring is a canonical injection from {0, 1}! to R. DenseRepr(g)
is unique to g because multilinear extensions over rings are unique.

Definition 2.5 (Sparse Polynomial). A multilinear polynomial g € R in [variables is a
sparse polynomial if |DenseRepr(g)| is sublinear in O(2!). Otherwise, g is a dense polynomial.

Lemma 2.6 (Generalized Schwartz-Zippel [BCPS18]). Let f € RS4[X1, -, X,] be a p-
variate nonzero polynomial over a ring R with per-variable degree at most d. Let C C R be
a sampling set. Then we have Pr Eon [f(r)=0] < %.

Next, we recall that the sum-check protocol from [LFKN92| can be extended to work
over a ring R using the generalized Schwartz-Zippel lemma.

Lemma 2.7 (Sum-check over Rings [CCKP19]). Let f € RSYXy, -+, X,] be a p-variate
nonzero polynomial over a ring R with per-variable degree at most d. Let Cgirong € R be
a strong sampling set. The protocol below checks that s = Zbe{oﬁl}ﬂ f(b) with soundness

pd

error .
‘CstTong |

1. In the i-th round for 1 <i < p,

e Upon receiving the challenges r1,--- ,1;_1 from the previous rounds, the prover
sends d+1 evaluations of the univariate polynomial h; at d+1 points in Cstrong,
where h; is defined as

hi(X)= Y f(ri,--,mio1, X,b) € R[X].

be{0,1}r—1

e Denote ho(rg) = s. The verifier checks that h;(0) + h;(1) = h;—1(ri—1), where
hi—1(ri—1) is computed by Lagrange-interpolating the d + 1 evaluations sent by
the prover.

. $
o Verifier sends a random challenge r; < Cstrong-

2. Verifier checks that h,(ry,) = f(ri, -+ ,ru).

2.2 Polynomial Commitment Scheme

We adapt the following definitions from [NS24].

Definition 2.8 (Polynomial Commitment Scheme). The tuple of algorithms (Setup, Com-
mit, Open, Eval) is a polynomial comitment scheme over a ring R with degree bound d
if:

° Setup(l)‘) — pp on input a security parameter A outputs public parameters pp,

e Commit(pp, f) — (C,st) on input public parameters pp and a message f € R=?
outputs a commitment C and decommitment state st,

e Open(pp,C, f,st,c) = {0,1} on input public parameters pp, a commitment C, a mes-
sage f € R=?%, a decommitment state st, and a relaxation factor ¢ € SL outputs 1 or
0 indicating whether C' is a valid commitment to f under pp, and

e Eval := (Eval.P,Eval.V) is a pair of probabilistic polynomial-time algorithms between
Eval.P(pp, (C,z,y), (f,st)) the evaluation prover and Eval.V(pp, (C,z,y)) the evalua-
tion verifier.

Definition 2.9 (Perfect Completeness). A polynomial commitment scheme PCS =(Setup,
Commit, Open, Eval) is said to be perfectly complete if for every polynomial g € R=? and
evaluation point r € R*, the following probability holds:

pp < Setup(1?)
Open(pp, C, f,st,e) =0 C, st < Commit(pp, f)
Vb=0 x:=(C,z, f(z)), w:=(f,st)
(tr,b) < (Eval.P(pp, X, W), Eval.V(pp, w))

Pr

Definition 2.10 (Knowledge Soundness). A polynomial commitment scheme PCS =(Setup,
Commit, Open, Eval) is said to be knowledge sound with knowledge error ¢ if for all stateful
probabilistic polynomial time (PPT) adversary P*, there exists an expected PPT extractor
€ such that

pp Setup(lA)

(Open(pp, C’ f’ st, C) 7é Lv f(x) 7é y) X:i= (Ca x,y),st* — P*(pp) —
" vb=1 (tr,5) (P (pp.x,st"), Vi(pp.x)) | — <) Fneglll):

(f.st,c) " (pp,X)

The extractor € has a black-box oracle access to the (malicious) prover P* and can rewind
it to any point in the interaction.

2.3 Traversing the Boolean Hypercube

We want to define two linear functions next: R* — R* and prev: R* — R*. Both functions
traverse a pi-dimension boolean hypercube B, and the two are inverses of each other. We

adopt the generator from [CBBZ23] and define it over Rou instead of a finite field. Also, we
modify our generator to map 0# € R* to an arbitrary point on B, \{0}* instead of to itself,
so that starting from any point on the boolean hypercube, all 2* points on the hypercube
can be traversed.

A generator in Rou. Fix some set S C [p — 1]. Let xg be 0# € R* and let x, be any
arbitrary point on B,, that is not xo. Denote g, (x.) as x,41 (i.e., X,41 is the point on B,

that is next in ‘sequence’ in the generator after x,). For all x = (by,---,b,) € B, that is
not xg or x,, we define the generator function g, : B, — B, as
gu(bla s 7bu) = (buablla T 1171>7

where b, = b; @b, if i € S, and b, = b; otherwise. We define g, for the two special cases as
follows:
gu(x.) = x0; and

9u(X0) = Xup1-

Effectively, we have included xq in the traversal path by g, by disconnecting two arbitrary
consecutive points x, and X,y; in the path and making them the preimage and image,
respectively, of x¢ in g,.

Lemma 2.11. For every u € N, let g, : B, — B, be the generator defined above. For

every x € B,,, it holds that {g,(f)(x)}ie[gu,l] = By, where {g;(f)()} denotes i many repeated
applications of g,

Definition 2.12 (The next Function). Given the result of Lemma 2.11, we define next:
Ry, — R, as
next := g,(-).

Inversely traversing the boolean hypercube. We introduce a new prev function that
is the inverse of next. Specifically, prev: R* — R* is a linear function that traverses the
entire pu-dimension boolean hypercube such that

prev(next(x)) = next(prev(x)) = x

for all x € {0, 1}#. Furthermore, let next’(prev/(x)) mean applying next i times and applying
prev j times for any 4,7 € N and in any order. Then for ¢ > j

next’(prev/ (x)) = next’ 7 (x)
and for j > 1

next’(prev? (x)) = prev? ~(x).

Inverse of the generator. We define the inverse of the generator g,, from above with the
aim of defining prev. Fix some set S C [— 1]. Denote by g, s the g, that operates on S.
For all x = (b1,--- ,b,) € B, that is not x¢ or x,41, the inverse of g, g is defined as follows:

ggl(bly"' ablt):(,%"'v /u—lvbl)

where b = b; ® by, if (i — 1) € S, and b} = b; otherwise. We define g, ' for the two special
cases as follows:
67 (x0) = x.; and

9 (Rey1) = X0.

By inspection, we see that g, and g;l undo the traversal done by each other, provided that
they operate on the same set S € [— 1].

Lemma 2.13. For every u € N and any set S C [u—1], let g;l : B, — B, be the generator

defined above. For every x € B,,, it holds that {gﬁl(i) (%) Yig[en—1] = By, where {ggl(i)()}
denotes i many repeated applications of g;l. In other words, g;l is also a generator of B,,.

Definition 2.14 (The prev Function). Given the result of Lemma 2.13, we define prev:
R,y — Ry as
-1
prev =g, (-).

3 Sparse Polynomial Commitment Scheme

We present our main result here: a sparse polynomial commitment scheme from lattices
with optimal prover costs linear in the sparsity of the polynomial. We start by describing
a time-optimal algorithm from Spartan that evaluates an m-sparse multilinear polynomial
in O(c - m) time for some ¢ € N we will define shortly. This algorithm takes as input
m Lagrange basis polynomials that express the unique dense representation of the sparse
polynomial. We adapt this algorithm to the ring domain and use it in a black-box manner
in Spartic.

A time-optimal algorithm for evaluating a multilinear polynomial of sparsity
m. We make a black-box use of Spark’s time-optimal algorithm for evaluating a sparse
polynomial. Suppose we wish to evaluate a polynomial g € R, defined over log N = c-logm
variables at a point r € R1°6 N, The high-level objective is to evaluate the m Lagrange basis
polynomials with a non-zero coefficient at r, multiply each result with the corresponding
coefficient, and sum the results. To do so in time O(c - m), first decompose r into ¢ € N
blocks so that r = (r1,--- ,r.) € (R'°8™)¢. Then each of the m Lagrange basis polynomials
evaluated at r is equal to the product of ¢ many (logm)-variate (smaller) Lagrange basis
polynomials, the ith of which is evaluated at r; (1 <4 < ¢). There are 2'°6™ = m Lagrange
basis polynomials defined over logm variables. Now, we can use any standard algorithm
that evaluates all m Lagrange basis polynomials at all ¢ points r; (1 <4 < ¢) in O(c-m)
time. The evaluation result for each r; is written to a write-once memory M of size M.
Later, the time-optimal algorithm can compute any given Lagrange basis polynomial at r
by performing ¢ lookups into M and multiplying together the returned values.

In R4, we must compute the Lagrange basis polynomials in a way that does not involve
division by zero divisors. Otherwise, it becomes difficult to contain soundness error. As we
defined in Definition 2.3, we use the standard multilinear interpolation functions

m

eq(r,x) = H (1 =) (1 = %) + rix]

i=1

1. RS «+ RS U {(a,v,t)},
2. store (v, next(t)) at address a in the untrusted memory, and

3. WS + WS U {(a,v,next(t))}.

Figure 1: Updating the internal states of a trusted checker during memory checking

as the Lagrange basis polynomials, where r; € RI°6™ is the ith sub-string of point r as
decomposed in the time-optimal algorithm.

Offline memory checking. Given the algorithm above, proving the evaluation of a sparse
polynomial is reduced to checking the contents of the memory cells written to over the course
of the algorithm. Recall the offline memory checking algorithm of [BEG191] where a trusted
checker issues read and write operations to an untrusted memory. We use the version of this
algorithm used in Lasso, where the memory is write-once. Let ¢ be the number of memories
of size N'/¢ used here.

Each memory cell maintains a counter whose count is incremented by the checker every
time the cell is read. Additionally, the checker maintains a local state comprising two
multisets: RS and WS. RS is initialized as {}, and WS is initialize to the set of tuples
(i,v;,0) for the count i € [N'/¢] and for v;, the value stored at address i. After every read
operation at address a in which the untrusted memory responds with the value-count pair
(v,t), the checker updates its internal state as follows:

Lemma 3.1. The domain of the counts is R. There exists a natural one-to-one mapping
between {0, 1}" for a positive integer n and any constant in R that is not larger than 2™. Let
WS and RS denote the multisets maintained by the checker at the end of m read operations.
Claim 2 in [STW?24] proves that, if for every read operation, the untrusted memory truthfully
returns the tuple last written to that location, then there exists a set S with cardinality M
consisting of tuples of the form (k,vg,ty) for all k € [M] such that WS=RS U S. Moreover,
S is computable in time linear in M.

Conversely, if the untrusted memory ever returns a value v’ for a memory call k € [M]
such that v # v’ where v is the initial value written to address k, then there does not exist
any set S satisfying WS=RS U S.

Proof. The proof closely resembles the proof for Claim 2 in [STW24]. If during all m read
operations, the untrusted memory returned the correct initial value stored in the memory
cell, then the set S exists as simply the current state of all memory cells i.e., M tuples
of (address, value, count). To prove the converse case, assume for contradiction that the
untrusted memory returns (a,v’,t) during the ith read operation, for v’ # v, and that there
exists S such that RSUS = WS is true. The existence of S implies that RS C WS. Notice
that the only way the untrusted checker can return (a,v’,t) at the ith read operation is if
(a,v', prev(t)) was written in that memory cell in Step 3 (Figure 1) during the (i — 1)th read
operation. This means in Step 1 of the same read operation, 1, (a,v’, prev(t)) was read into
RS. This, in turn, means that in Step 3 of the (i — 2) read operation, (a,v’, prev(®(t)) was
added to WS, and so on. Since prev traverses the entire (2!°¢ V)-dimension boolean hypercube
starting from ¢, an induction-style argument here proves that the checker issued 2'°8V read

operations. However, this is a contradiction because the number of read operations is equal
to the sparsity of the committed polynomial i.e., m, which is by definition of a sparse
polynomial (significantly) less than the number of points on the boolean hypercube. O

3.1 Result for c=2

Our actual polynomial evaluation scheme is presented in Figure 2. Before that, we introduce
the techniques that we will use to build the scheme. In this section, we present our main
results in the special case when ¢ = 2 and then in Section 3.2, we show how the result
generalizes to any ¢ € N.

Representing sparse polynomials with dense polynomials. The high-level idea of
our sparse polynomial commitment scheme is to find the unique representation of a sparse
polynomial as dense polynomials and commit to the dense polynomials using any (dense)
polynomial commitment scheme for lattices.

Recall that eq, : {0,1}* — {0,1}® takes as input two vectors of length s and outputs 1
if and only if the vectors are equal. Let D denote a (2log M)-variate multilinear polynomial
that evaluates to a non-zero value at at most m locations over {0,1}2°¢M je. the boolean
hypercube B3iogm. Much like the technique in [STW24], we observe that D can be written
as follows using multilinear extensions over rings.

Lemma 3.2. For any r € R?°¢M interpret it as a tuple (rg,7y) in a natural manner,
where 14,1y € R°8 M Then, using multilinear extensions over rings, we can evaluate D at
(rz,1y) as

D(Tﬂcary) = Z D<rmvry) '&](ivrl’) &](],Ty) (1)
(i,j)E{O,l}l"g M><{0,1}1°g M. D(i,5)#0

Lemma 3.3. Let to-ring be a canonical injection from {0,1}™ to Ry, and let to-bits be its
inverse. Given the polynomial D defined above, there exist three (logm)-variate multilinear
polynomials row, col, val such that the following holds for all ry,r, € R™°8M.

D(rg,ry) = Z val(k) - eq(to-bits(row(k)),) - €g(to-bits(col(k)),). (2)
ke{0,1}losm

Proof. The proof closely resembles the proof for Claim 1 in [STW24]. Since D evaluates
to a non-zero value at at most m points on Baiog ar, D can be represented uniquely with
m tuples of the form (i,j, D(i,7)) € ({0,1}!°¢M {0,1}°eM R1). Using to-ring, we can
represent the first two entries in each tuple as an element of R. Then, we can make three
vectors R, C,V € R™ that encode these m tuples such that for the kth tuple, its to-ring(7)
is stored in the kth location of R, to-ring(j) in the kth location of C, and D(i,7) in the kth
location of V. Let row, col, val be the unique multilinear extensions of R, C,V respectively.
Then we can observe that Equation (2) holds by inspecting it together with Equation (1). O

Conceptually, for each of the m evaluations that are summed in Equation (1), the time-
optimal algorithm for evaluating D fills up the first of its two memories with evaluations of
eq(i,r,) and the second memory with evaluations of eq(j,r,) for i,j € {0,1}1°¢M . Then,
the algorithm can compute Equation (2) via one lookup into each memory, to the respective
memory cells with (binary) indices to-bits(row(k)) and to-bits(col(k)) for k € {0,1}°8™

followed by two multiplications in R. The algorithm then repeats this m times in O(c-m)
time as claimed.

Counter polynomials. Consider the oracles E,, and F,, as the purported multilinear
extensions of the values returned by all memory reads that the aforementioned time-optimal
algorithm performed into its two memories. Notice that the returned values are purported
because we assume an untrusted memory. Hence, we define three ‘counter’ polynomials
that will aid the verifier in the evaluation proof of Figure 2 to check the correctness of the
returned values i.e., the memory count of each memory cell. The counter polynomials encode
truthful counts that would have been returned had the untrusted memory been honest in
all its responses.

First, given the size M of memory and a list of m addresses involved in read operations,
define two vectors C, € R™ and Cy € RM as follows. For k € [m], C,[k] stores the correct
count returned by the kth read operation, and for j € [M], C[j] stores the correct final count
stored at the jth memory location. Computing these three vectors take O(m) operations in
Rq.

Then, the counter polynomials are read ts = (A?;, write cts = 6’; + 1, and final _cts =
é‘vf, and they are unique for the memory size M and the list of m read addresses.

Lemma 3.4. We reproduce Claim 8 in [STW2/] here, adapted for the ring domain. Given
a (2log M)-variate multilinear polynomial, suppose that row, col,val are multilinear polyno-
mials committed to by the commit algorithm of a dense polynomial commitment scheme.
Furthermore, suppose that

(Ery, Ery,read_ts, ., final_cts ,read_ts_,final_cts_)

denote the additional polynomials sent by the prover at the beginning of the evaluation proof.
For any v, € R1°¢M | suppose that

VEk € {0,1}1°8™ E,.(k) = éq(to-bits(row(k)), 7). (3)
Then the following holds: WS = RS US, where
e WS = {(to-ring(i), €q(i,r,),0) : i € {0,1}°eM} U {(row(k), E,.(k), write_cts ., (k) =

ow(k) + 12k € {0,1}°e™}
e RS = {(row(k), B, (k),read_ts,, (k) : k € {0,1}1°2™}, and
o S = {(to-ring(4), eq(i, r,), final _cts,, (i) : i € {0, 1} &M},

Meanwhile, if Equation (3) does not hold, then there is no set S such that WS = RSUS.
Similarly, for any ry € RIeM - suppose that

read ts

Vk € {0,118 E,, (k) = ég(to-bits(col(k)), 7).
Then the following holds: WS = RS US, where

e WS = {(to-ring(i), éq(i,r;),0) : i € {0,1}°eM} U {(col(k), E,(k),write_cts_,(k) =
read_ts_ (k) + 1) : k € {0,1}°s™}

e RS = {(col(k), E,(k),read_ts_,(k)) : k € {0,1}°¢™} and
e S = {(to-ring(i),eq(i,r,),final_cts_,(i)) : i € {0,1}l°e M},

Proof. Proof follows from Lemma 3.1. O

10

There is no direct way to prove the multiset relation WS = RSUS in the above lemma.
Hence, we rely on the following probabilistic check. We use two collision-resistant hash
functions h, : R* — R and H,, : (R®)* — R where (R?)* denotes a multiset with
elements from R3 and 7,7 €g R. The hash functions are defined as follows.

hy(a,v,t) =a-y*+v-y+t (4)
Hen(A) = J[(hyla,0,0) —7) ()
(a,v,t)€EA

Lemma 3.5. Given two multisets A, B where each element is from C3 for a sampling set
C C Ry, checking that A and B are permutations of one another is equivalent to check-
ing the following, except for a soundness error of 3(max(|Al,|B|))/|C| over the choice of
v, 7T from Rq: Hry(A) = Hen(B). That is, if A = o(B) for some permutation o, then
Hrn(A) = Hr o (B) with probability 1 over randomly chosen values 7,7y, while if A # o(B),
then H,~(A) = H, (B) with probability at most O(max(|A|,|B]))/|C|). Furthermore, this
probability is negligible if C is a sampling set of an exponential size, the existence of which
n Rq is proven in Lemma 2.2.

Proof. The statement H, ,(A) = H, (B) is equivalent to H, ,(A) —H. (B) = 0 where the
LHS is some tri-variate multilinear polynomial P € R=I4I+IBI [A,V,T]. Tt is easy to see by in-
specting Equations (4) and (5) that P has per-variable degree at most max(|A|,|B]). Hence,
the soundness error claim follows directly from the generalized Schwartz-Zippel lemma. That
is, for any two multisets A and B over Ry,

Preo{H-~(A) = Hry(B)|A # B} < 3(max(|4], |B[))/[C|.
O

We are now ready to introduce the actual commit and evaluation phases of our sparse
polynomial commitment scheme.

Commit phase. To commit to D, the prover commits to to the three (logm)-variate mul-
tilinear polynomials row, col, val using the commit function of any polynomial commitment
scheme for dense multilinear polynomials in R,.

Evaluation phase. In the evaluation phase of Figure 2, the prover proves that it correctly
ran the time-optimal algorithm at the beginning of Section 3 to evaluate D at the requested
point (r,,7,) € (R°6*)2. Denote the prover by P and the verifier by V.

1. P — V: four (logm)-variate multilinear polynomials E,,,E,,,read_ts,,,

read_ts.,, and two (logM)-variate multilinear polynomials final _cts,,,
final_cts_.
2. Notice that D(ra,ry) = > pcq0,1y108m Val(k) - Era(k) - Epy (k) assuming that
o Vk € {0,1}°e™ E,, (k) = eq(to-bits(row(k)),,), and (Eq 1)
o Vk € {0,1}°¢™ E, (k) = ég(to-bits(col(k)), ry). (Eq 2)

Hence, V and P apply the sum-check protocol over rings to reduce this check to
checking that the following equations hold, where r, € R1°¢™ is chosen at random

11

by V over the course of the protocol, and vg,, and vg,, are values provided by P
at the end of the sum-check protocol:

2
e val(ry) = vyais

o E..(r) < vp., and Ey(r:) Koy

rx? ry°

3. V: check if the above three equalities above hold with one oracle query to each of
val, Ey5, and F,,.

4. V checks Eq 1 as follows.
4-1. V=>P: 1,75 R.

4-2. V + P: run a sum-check protocol to reduce the check that #H,,(WS) =
Hr~(RS) - Hr~(S), where WS, RS, S are defined in Lemma 3.4 and H is
defined in Lemma 3.5, to checking if the following hold, where ry; € Rl M
and r,, € R°6M are chosen at random by V over the course of the sum-check
protocol:

~ ?
° €Q(rMa TI) = Vegq;

?
o K., =vE

rx?

2 ? . ?
o row(ry,) = Vrow, read tspow(rm) = Uread _ts,en» aNd final _ctsion(rar) =

Vfinal _ CtSron

4-3. V: directly check if the first equality holds, which can be done with O(log M)
ring operations, and check the remaining equations hold with one oracle
query to each of row, E, ., read tsow, and final _ctsow.

5. V checks Eq 2 as follows.
51. V= P: 7,9 € R.
5-2. V « P: run a sum-check protocol to reduce the check that H,. ., (WS') =
Mo (RS')-Hrr +(S"), where WS, RS’, S" are defined in Lemma 3.4 and H is
defined in Lemma 3.5, to checking if the following hold, where 4, € R M

and 1/, € R°6M are chosen at random by V over the course of the sum-check
protocol:

~ ?
® €q(riy,ry) = Veg:

?
L4 Ery = ’UETya

e col(r!)) - Veol; read _tseol(r7,) ~ Uread _tse> aNd final _ctseol (1) ~

Ufinal _ctscol -
5-3. V: directly check if the first equality holds, which can be done with O(log M)

ring operations, and check the remaining equations hold with one oracle
query to each of col, E,,, read_tsc, and final _ctsc,).

Figure 2: Evaluation procedure for the Spartic sparse polynomial commitment scheme.

12

Lemma 3.6 (Perfect Completeness). Spartic has perfect completeness.

Proof. Perfect completeness follows from the perfect completeness of the generalized sum-
check protocol and the memory checking of [BEGT91], and the fact that the probabilistic
multiset equality check of Lemma 3.5 verifies with probability 1 for multisets WS (respec-
tively WS') and RSU S (respectively RS’ U S’) that are permutations of each other, if the
prover is honest. O]

Lemma 3.7 (Knowledge Soundness). Spartic has a negligible soundness error.

Proof. The soundness error of multiset equality checks is O(m)/|C| for some sampling set
C of R,. The soundness error of sum-check protocols over rings is O(m)/|Csirong| for some
strong sampling set Cgtrong of Ry. Without loss of generality, assume Cgtrong is such that
Cstrong C C. That is, |Cstrong| < |C]. Using a standard union bound, we conclude that the
soundness error for our sparse polynomial commitment scheme is at most O(m)/|Cstrongl-
Using Lemma 2.2, we conclude O(m)/|Cstrong| is indeed negligible. O

3.2 General Result for ¢>2

We can naturally extend Lemmas 3.2 and 3.3 to the general case when ¢ > 2 memories are
used for offline memory checking. Suppose D is a (clog M)-variate polynomial.

Lemma 3.8. For any r € R°1°¢M interpret it as a tuple (r1,--- ,7.) in a natural manner,
where 1, -+ ,r. € R°$M _ Then, using multilinear extensions over rings, we can compute
D(ry, - ,rc) as

> D(@y, -+ e) - éqlay,m) - €q(ze,7e).
(21, ,2c)€{0,1} o8 M x ... x {0,1}es M. D (- ,x.)#0

Lemma 3.9. Let to-ring be a canonical injection from {0,1}™ to Ry, and let to-bits be its
inverse. Given the polynomial D defined above, there exist ¢+ 1 (logm)-variate multilinear

polynomials dimq, - - -, dime, val such that the following holds for all vy, -+ ,re € RE08™,
D(ry,--- ,re) = Z val(k) - eq(to-bits(dimy(k)), 1) - - - €éq(to-bits(dim.(k)), 7). (6)
kE{O,l}logm

Proof. Tt is easy to see how the proof for Lemma 3.3 generalizes to this case for any ¢ € N.
In particular, the proof for Lemma 3.3 is simply a special case in which dim; is row and
dimg is col. O

Given Equations (4) and (5), we can define the evaluation proof of our sparse polynomial
commitment scheme accordingly. The verifier now checks ¢ different untrusted memories,
rather than two, each of size NY/¢, That is, the nth memory (1 < n < ¢) stores all evaluations
of €g(ze,7.) as . ranges over {0,1}1°8M Then, for each of the ¢ memories checked, the
prover commits to three (logm)-variate multilinear polynomials and one (log M)-variate
polynomial.

Lemma 3.10 (Perfect Completeness in the General Case). Our sparse polynomial commit-
ment scheme has perfect completeness when ¢ > 2.

13

Proof. Perfect completeness of the ¢ = 2 case in Figure 2 extends to the general case. [

Lemma 3.11 (Knowledge Soundness in the General Case). Our sparse polynomial com-
mitment scheme has a negligible soundness error when ¢ > 2.

Proof. The evaluation proof with ¢ memories uses ¢ multiset equality checks and ¢+ 1 sum-
checks over rings. From the proof of Lemma 3.7, we see that this makes the soundness
error in the general case O(c - m)/|Csirong|. Using Lemma 2.2, this probability is indeed
negligible. O

We now formalize our results in the following theorem to standardize the commitment
scheme for sparse multilinear polynomials in R, with optimal prover costs.

Theorem 1. [STW2/] Suppose we have a polynomial commitment scheme for (dense)
(log M)-variate multilinear polynomials with the following parameters (where M is a positive
integer and WLOG a power of 2):

o the size of the commitment is ¢(M) i.e., c is a function of M,

e the running time of the commit algorithm is tc(M),

e the running time of the prover to prove a polynomial evaluation is tp(M),

e the running time of the verifier to verify a polynomial evaluation is tv(M), and

e the proof size is p(M).
Then, there exists a sparse polynomial commitment scheme for m-sparse multilinear poly-
nomials over 2log M = log N wvariables with the following parameters:

o the size of the commitment is (3¢ + 1) - c(m) + ¢ - c(M),

o the running time of the commit algorithm is O(c - (tc(m) + tc(M))),

e the running time of the prover to prove a polynomial evaluation is O(c - (tp(m) +
tc(M))),

e the running time of the verifier to verify a polynomial evaluation is O(c - (tv(m) +
tv(M))), and

e the proof size is O(c- (p(m)) + p(M))).

Substituting 2 for ¢ in the above Theorem gives an equivalent theorem for the special case
in Section 3.1.

Example costs. The generic transformation method in Appendix B of [CBBZ23] allows
committing to a (log M)-variate multilinear polynomial as a M-variate univariate polyno-
mial. Consider using Greyhound to commit to this M-variate univariate polynomial with
degree bound M. Then, Spartic achieves the following parameters:

e the size of the commitment is (3c+1)-Ox(1) +c- Ox(1) i.e., 4c+1 many Z, elements,

e the running time of the prover to prove a polynomial evaluation is O(c- (m + log M)),

14

e the running time of the verifier to verify a polynomial evaluation is O(c- (v/m+vM)),
and

e the proof size is O(c - (polylog(m) + polylog(M))).

For concrete costs, we refer the readers to Table 1 (proof sizes) and Table 2 (running times)
of [NS24]. Furthermore, dense polynomial commitment schemes, including Greyhound, that
support batch evaluation of proofs can do the multiset equality check of Lemma 3.5 once
across all ¢ memories. These schemes can enjoy prover and verifier costs that do not scale
with the number of polynomials to evaluate i.e., lose the ¢ in the last three bullet points of
Theorem 1.

4 Conclusion

We presented Spartic, the first sparse polynomial commitment scheme for lattices. Our
scheme achieves prover runtime that depends only on the sparsity of the committed poly-
nomial, which is a key benefit of sparse polynomial commitment schemes. This is done
by first transforming the sparse polynomial into its dense representation with respect to
Lagrange basis polynomials and proving the correct execution of a time-optimal algorithm
for evaluating multilinear polynomials. The evaluation proof is done efficiently using the
generalized sum-check protocol for rings.

We also note without proving that we can build Lasso-style lookup arguments from
standard lattice assumptions by replacing Spark with Spartic in Lasso. This can be achieved
by having an untrusted prover commit to a vector a € R™ and proving that all entries
of a reside in some predetermined table t € R™. Express the table as a highly-structured
(in a precise sense that Lasso defines) vector of size N. Then, the lookup argument is
equivalent to computing the inner product of an m-sparse vector of size N with the table
vector. Because Lasso supports indexing tables by points on the boolean hypercube, it can
be naturally composed with Spartic.

Acknowledgements. TODO.

References

[ABGK22] Nitin Agrawal, James Bell, Adria Gascon, and Matt J. Kusner. Mpec-friendly
commitments for publicly verifiable covert security, 2022.

[ACL*22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri
AravindaKrishnan Thyagarajan. Lattice-based snarks: Publicly verifiable, pre-
processing, and recursively composable. In Advances in Cryptology - CRYPTO
2022 - }2nd Annual International Cryptology Conference, CRYPTO 2022, Pro-
ceedings, pages 102-132, Germany, October 2022. Springer. International Cryp-
tology Conference, CRYPTO ; Conference date: 13-08-2022 Through 18-08-
2022.

[BC24] Dan Boneh and Binyi Chen. LatticeFold: A lattice-based folding scheme and
its applications to succinct proof systems. Cryptology ePrint Archive, Paper
2024/257, 2024.

[BCFL23|] David Balbas, Dario Catalano, Dario Fiore, and Russell W.F. Lai. Chainable
functional commitments for unbounded-depth circuits. In Guy Rothblum and

15

[BCHO22|

[BCPS18]

[BDFG20]

[BEGT91]

[BHV+23]

[BS22|

[BSU24|

[CBBZ23]

[CCKP19]

[CMNW24]

[FMN23]

[GNS24|

[HSS24]

[KZG10]

Hoeteck Wee, editors, Theory of Cryptography - 21st International Conference,
TCC 2023, Proceedings, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 363-393, Germany, 2023. Springer.

Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orri. Gemini:
Elastic SNARKSs for diverse environments. Cryptology ePrint Archive, Paper
2022/420, 2022.

Anurag Bishnoi, Pete L. Clark, Aditya Potukuchi, and John R. Schmitt. On ze-
ros of a polynomial in a finite grid. Combinatorics, Probability and Computing,
27(3):310-333, 2018.

Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polyno-
mial commitment schemes for multiple points and polynomials. JACR Cryptol.
ePrint Arch., 2020:81, 2020.

M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the cor-
rectness of memories. In Proceedings 82nd Annual Symposium of Foundations
of Computer Science, pages 90-99, 1991.

Rishabh Bhadauria, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
Wenxuan Wu, and Yupeng Zhang. Private polynomial commitments and appli-
cations to mpe. In Public-Key Cryptography — PKC 2023: 26th IACR Interna-
tional Conference on Practice and Theory of Public-Key Cryptography, Atlanta,
GA, USA, May 7-10, 2023, Proceedings, Part II, page 127158, Berlin, Heidel-
berg, 2023. Springer-Verlag.

Ward Beullens and Gregor Seiler. LaBRADOR: Compact proofs for R1CS from
module-SIS. Cryptology ePrint Archive, Paper 2022/1341, 2022.

Alexandre Belling, Azam Soleimanian, and Bogdan Ursu. Vortex: A list poly-
nomial commitment and its application to arguments of knowledge. Cryptology
ePrint Archive, Paper 2024/185, 2024.

Binyi Chen, Benedikt Biinz, Dan Boneh, and Zhenfei Zhang. Hyperplonk:
Plonk with linear-time prover and high-degree custom gates. In Advances in
Cryptology — EUROCRYPT 2023: 42nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Lyon, France, April
23-27, 2023, Proceedings, Part II, page 499-530, Berlin, Heidelberg, 2023.
Springer-Verlag.

Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Verifiable
computing for approximate computation. Cryptology ePrint Archive, 2019.
Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, and Hoeteck Wee. Poly-
nomial commitments from lattices: Post-quantum security, fast verification and
transparent setup. Cryptology ePrint Archive, Paper 2024/281, 2024.
Giacomo Fenzi, Hossein Moghaddas, and Ngoc Khanh Nguyen. Lattice-based
polynomial commitments: Towards asymptotic and concrete efficiency. Cryp-
tology ePrint Archive, Paper 2023/846, 2023.

Chaya Ganesh, Vineet Nair, and Ashish Sharma. Dual polynomial commitment
schemes and applications to commit-and-prove SNARKs. Cryptology ePrint
Archive, Paper 2024,/943, 2024.

Intak Hwang, Jinyeong Seo, and Yongsoo Song. Concretely efficient lattice-
based polynomial commitment from standard assumptions. Cryptology ePrint
Archive, Paper 2024/306, 2024.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-

16

[LFKN92|

[NS24]

[Set19]

[STW24]

[WW23]

[ZXZS19]

mitments to polynomials and their applications. In Advances in Cryptology -
ASTACRYPT 2010 - 16th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, volume 6477 of Lecture Notes
in Computer Science, pages 177-194. Springer, 2010.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859-868, October 1992.
Ngoc Khanh Nguyen and Gregor Seiler. Greyhound: Fast polynomial commit-
ments fromlattices. In Advances in Cryptology — CRYPTO 2024: 44th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2024, Proceedings, Part X, page 243-275, Berlin, Heidelberg, 2024. Springer-
Verlag.

Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. Cryptology ePrint Archive, Paper 2019/550, 2019.

Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking thelookup singu-
larity withlasso. In Advances in Cryptology — EUROCRYPT 2024: 43rd An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part VI, page
180-209, Berlin, Heidelberg, 2024. Springer-Verlag.

Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional
commitments from lattices. In Advances in Cryptology — EUROCRYPT 2023:
42nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III,
page 385—416, Berlin, Heidelberg, 2023. Springer-Verlag.

Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent
polynomial delegation and its applications to zero knowledge proof. Cryptology
ePrint Archive, Paper 2019/1482, 2019.

17

	Introduction
	Technical Overview

	Preliminaries
	Sum-checks and Multilinear Extensions over Rings
	Polynomial Commitment Scheme
	Traversing the Boolean Hypercube

	Sparse Polynomial Commitment Scheme
	Result for c=2
	General Result for c>2

	Conclusion

